scholarly journals A price-aware congestion control protocol for cloud services

Author(s):  
Xiaocui Sun ◽  
Zhijun Wang ◽  
Yunxiang Wu ◽  
Hao Che ◽  
Hong Jiang

AbstractIn current infrastructure-as-a service (IaaS) cloud services, customers are charged for the usage of computing/storage resources only, but not the network resource. The difficulty lies in the fact that it is nontrivial to allocate network resource to individual customers effectively, especially for short-lived flows, in terms of both performance and cost, due to highly dynamic environments by flows generated by all customers. To tackle this challenge, in this paper, we propose an end-to-end Price-Aware Congestion Control Protocol (PACCP) for cloud services. PACCP is a network utility maximization (NUM) based optimal congestion control protocol. It supports three different classes of services (CoSes), i.e., best effort service (BE), differentiated service (DS), and minimum rate guaranteed (MRG) service. In PACCP, the desired CoS or rate allocation for a given flow is enabled by properly setting a pair of control parameters, i.e., a minimum guaranteed rate and a utility weight, which in turn, determines the price paid by the user of the flow. Two pricing models, i.e., a coarse-grained VM-Based Pricing model (VBP) and a fine-grained Flow-Based Pricing model (FBP), are proposed. The optimality of PACCP is verified by both large scale simulation and small testbed implementation. The price-performance consistency of PACCP are evaluated using real datacenter workloads. The results demonstrate that PACCP provides minimum rate guarantee, high bandwidth utilization and fair rate allocation, commensurate with the pricing models.

2021 ◽  
Author(s):  
xiaocui sun ◽  
Zhijun Wang ◽  
Yunxiang Wu ◽  
Hao Che ◽  
Hong Jiang

Abstract In current infrastructure-as-a service (IaaS) cloud services, customers are charged for the usage of computing/storage resources only, but not the network resource. The difficulty lies in the fact that it is nontrivial to allocate network resource to individual customers effectively, especially for short-lived flows, in terms of both performance and cost, due to highly dynamic environments by flows generated by all customers. To tackle this challenge, in this paper, we propose an end-to-end Price-Aware Congestion Control Protocol (PACCP) for cloud services. PACCP is a network utility maximization (NUM) based optimal congestion control protocol. It supports three different classes of services (CoSes), i.e., best effort service (BE), differentiated service (DS), and minimum rate guaranteed (MRG) service. In PACCP, the desired CoS or rate allocation for a given flow is enabled by properly setting a pair of control parameters, i.e., a minimum guaranteed rate and a utility weight, which in turn, determines the price paid by the user of the flow. Two pricing models, i.e., a coarse-grained VM-Based Pricing model (VBP) and a fine-grained Flow-Based Pricing model (FBP), are proposed. The optimality of PACCP is verified by both large scale simulation and small testbed implementation. The price-performance consistency of PACCP are evaluated using real datacenter workloads. The results demonstrate that PACCP provides minimum rate guarantee, high bandwidth utilization and fair rate allocation, commensurate with the pricing models.


2021 ◽  
Author(s):  
Zhijun Wang ◽  
Yunxiang Wu ◽  
Rosenkrantz Stoddard ◽  
Ning Li ◽  
Minh Nguyen ◽  
...  

2021 ◽  
pp. 227853372110257
Author(s):  
Asheesh Pandey ◽  
Rajni Joshi

We examine five important asset pricing anomalies, namely, size, value, momentum, profitability, and investment rate to evaluate their efficacy in major West European economies, that is, France, Germany, Italy, and Spain. We employ four prominent asset pricing models, namely Capital Asset Pricing Model (CAPM), Fama–French three-factor (FF3) model, Carhart model and Fama–French five-factor (FF5) model to evaluate whether portfolio managers can create trading strategies to generate risk-adjusted extra normal returns for their investors. We also examine the prominent anomalies which pass the test of asset pricing in our sample countries and evaluate the best performing asset pricing model in explaining returns in each of these countries. We find that in spite of being matured markets, these countries provide portfolio managers with opportunities to exploit these strategies to generate extra normal returns for their investors. Momentum anomaly for Germany and profitability anomaly for Italy can be exploited by fund managers for generating risk-adjusted returns. For France, except for net investment rate anomaly, all the other anomalies remained unexplained by asset pricing models. We also find CAPM to be the better model in explaining returns of Italy and Spain. While FF3 factor and FF5 factor models explain returns in Germany, our sample asset pricing models failed to work for France. Our study has implications for portfolio managers, academia, and policymakers.


2021 ◽  
Author(s):  
Áine Byrne ◽  
James Ross ◽  
Rachel Nicks ◽  
Stephen Coombes

AbstractNeural mass models have been used since the 1970s to model the coarse-grained activity of large populations of neurons. They have proven especially fruitful for understanding brain rhythms. However, although motivated by neurobiological considerations they are phenomenological in nature, and cannot hope to recreate some of the rich repertoire of responses seen in real neuronal tissue. Here we consider a simple spiking neuron network model that has recently been shown to admit an exact mean-field description for both synaptic and gap-junction interactions. The mean-field model takes a similar form to a standard neural mass model, with an additional dynamical equation to describe the evolution of within-population synchrony. As well as reviewing the origins of this next generation mass model we discuss its extension to describe an idealised spatially extended planar cortex. To emphasise the usefulness of this model for EEG/MEG modelling we show how it can be used to uncover the role of local gap-junction coupling in shaping large scale synaptic waves.


2021 ◽  
Vol 64 (6) ◽  
pp. 107-116
Author(s):  
Yakun Sophia Shao ◽  
Jason Cemons ◽  
Rangharajan Venkatesan ◽  
Brian Zimmer ◽  
Matthew Fojtik ◽  
...  

Package-level integration using multi-chip-modules (MCMs) is a promising approach for building large-scale systems. Compared to a large monolithic die, an MCM combines many smaller chiplets into a larger system, substantially reducing fabrication and design costs. Current MCMs typically only contain a handful of coarse-grained large chiplets due to the high area, performance, and energy overheads associated with inter-chiplet communication. This work investigates and quantifies the costs and benefits of using MCMs with finegrained chiplets for deep learning inference, an application domain with large compute and on-chip storage requirements. To evaluate the approach, we architected, implemented, fabricated, and tested Simba, a 36-chiplet prototype MCM system for deep-learning inference. Each chiplet achieves 4 TOPS peak performance, and the 36-chiplet MCM package achieves up to 128 TOPS and up to 6.1 TOPS/W. The MCM is configurable to support a flexible mapping of DNN layers to the distributed compute and storage units. To mitigate inter-chiplet communication overheads, we introduce three tiling optimizations that improve data locality. These optimizations achieve up to 16% speedup compared to the baseline layer mapping. Our evaluation shows that Simba can process 1988 images/s running ResNet-50 with a batch size of one, delivering an inference latency of 0.50 ms.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Esteban Moro ◽  
Dan Calacci ◽  
Xiaowen Dong ◽  
Alex Pentland

AbstractTraditional understanding of urban income segregation is largely based on static coarse-grained residential patterns. However, these do not capture the income segregation experience implied by the rich social interactions that happen in places that may relate to individual choices, opportunities, and mobility behavior. Using a large-scale high-resolution mobility data set of 4.5 million mobile phone users and 1.1 million places in 11 large American cities, we show that income segregation experienced in places and by individuals can differ greatly even within close spatial proximity. To further understand these fine-grained income segregation patterns, we introduce a Schelling extension of a well-known mobility model, and show that experienced income segregation is associated with an individual’s tendency to explore new places (place exploration) as well as places with visitors from different income groups (social exploration). Interestingly, while the latter is more strongly associated with demographic characteristics, the former is more strongly associated with mobility behavioral variables. Our results suggest that mobility behavior plays an important role in experienced income segregation of individuals. To measure this form of income segregation, urban researchers should take into account mobility behavior and not only residential patterns.


Sign in / Sign up

Export Citation Format

Share Document