scholarly journals Relationship between large-scale ionospheric field-aligned currents and electron/ion precipitations: DMSP observations

2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Chao Xiong ◽  
Claudia Stolle ◽  
Patrick Alken ◽  
Jan Rauberg

Abstract In this study, we have derived field-aligned currents (FACs) from magnetometers onboard the Defense Meteorological Satellite Project (DMSP) satellites. The magnetic latitude versus local time distribution of FACs from DMSP shows comparable dependences with previous findings on the intensity and orientation of interplanetary magnetic field (IMF) By and Bz components, which confirms the reliability of DMSP FAC data set. With simultaneous measurements of precipitating particles from DMSP, we further investigate the relation between large-scale FACs and precipitating particles. Our result shows that precipitation electron and ion fluxes both increase in magnitude and extend to lower latitude for enhanced southward IMF Bz, which is similar to the behavior of FACs. Under weak northward and southward Bz conditions, the locations of the R2 current maxima, at both dusk and dawn sides and in both hemispheres, are found to be close to the maxima of the particle energy fluxes; while for the same IMF conditions, R1 currents are displaced further to the respective particle flux peaks. Largest displacement (about 3.5°) is found between the downward R1 current and ion flux peak at the dawn side. Our results suggest that there exists systematic differences in locations of electron/ion precipitation and large-scale upward/downward FACs. As outlined by the statistical mean of these two parameters, the FAC peaks enclose the particle energy flux peaks in an auroral band at both dusk and dawn sides. Our comparisons also found that particle precipitation at dawn and dusk and in both hemispheres maximizes near the mean R2 current peaks. The particle precipitation flux maxima closer to the R1 current peaks are lower in magnitude. This is opposite to the known feature that R1 currents are on average stronger than R2 currents.

2020 ◽  
Author(s):  
Malcolm Dunlop ◽  
Junying Yang ◽  
Xiangcheng Dong ◽  
Mervyn Freeman ◽  
Neil Rogers ◽  
...  

<p>The orientation of field-aligned current sheets (FACs) can be inferred from dual-spacecraft correlations of the FAC signatures between two Swarm spacecraft (A and C), using the maximum correlations obtained from sliding data segments. Statistical analysis of both the correlations and the inferred orientations shows clear trends in magnetic local time (MLT) which reveal behaviour of both large and small scale currents. The maximum correlation coefficients show distinct behaviour in terms of either the time shift, or the shift in longitude between Swarm A and C for various filtering levels. The lower-latitude FACs show the strongest correlations for a broad range of MLT centred on dawn and dusk, with a higher correlation coefficient on the dusk-side and lower correlations near noon and midnight, and broadly follow the mean shape of the auroral boundary for the lower latitudes corresponding to Region 2 FACs (and are most well-ordered on the dusk side). Individual events sampled by higher altitude spacecraft (e.g. the 4 Cluster spacecraft), in conjunction with Swarm (mapping both to region 1 and 2), also show two different domains of FACs: time variable, small-scale (10s km), and more stationary large-scale (>100 km) FACs. We investigate further how these FAC regimes are dependent on geomagnetic activity, focusing on high activity events. Both the statistical trends, and individual conjugate events, show comparable effects seen in the ground magnetometer signals (dH/dt) during storm/substorm activity and show distributions that are similar.</p>


2020 ◽  
Author(s):  
Matthias Wiegner ◽  
Alexander Geiß ◽  
Ina Mattis ◽  
Fred Meier ◽  
Thomas Ruhtz

Abstract. Measurements of the vertical distribution of aerosol particles are typically only available at selected sites leaving the question of their representativeness for urban and regional scales unanswered. As a contribution to solve this problem we have investigated ceilometer signals from two testbeds in Munich and Berlin, Germany. For each testbed measurements of 24 months from 6 ceilometers were available. This constitutes a unique data set, in particular as the same type of instruments are deployed and the same data evaluation schemes applied. Two parameters are discussed: the mixing layer height (MLH) as an indicator for the vertical distribution and the integrated backscatter as a proxy for the amount of aerosols in the mixing layer. The MLH was determined by the COBOLT algorithm, the integrated backscatter from the Klett (backward and forward) inversion scheme. It was found that the mean difference of the MLH at two sites within a testbed typically only varies by less than 50 m, slightly increasing with the distance of the corresponding sites. Almost 60 % of all intercomparisons agree within ±100 m. MLHs are typically correlated with R > 0.9 in particular for the Berlin-testbed. With respect to the integrated backscatter the correlation is in the range of 0.7 < R < 0.9. This is expected from the diversity of local aerosol sources within a given testbed. We conclude from our data that the MLH determined from a single ceilometer is applicable for a whole metropolitan area. However, the integrated backscatter of particles within the mixing layer exhibits a variability of 15–25 % suggesting that one ceilometer is not representative, especially if atmospheric processes shall be investigated.


2016 ◽  
Author(s):  
Han Wang ◽  
Iain Colin Prentice ◽  
William Cornwell ◽  
Trevor Keenan ◽  
Tyler Davis ◽  
...  

The rate of carbon uptake by land plants depends on the ratio of leaf-internal to ambient carbon dioxide partial pressures, here termed χ. This quantity is a key determinant of both primary production and transpiration and the relationship between them. But current models for χ are empirical and incomplete, contributing to the many uncertainties afflicting model estimates and future projections of terrestrial carbon uptake. Here we show that a simple evolutionary optimality hypothesis generates functional relationships between χ and growth temperature, vapour pressure deficit and elevation that are precisely and quantitatively consistent with empirical χ values from a worldwide data set containing > 3500 stable carbon isotope measurements. A single global equation embodying these relationships then unifies the empirical light use efficiency model with the standard model of C3photosynthesis, and successfully predicts gross primary production as measured at flux sites. This achievement is notable because of the equation′s simplicity (with just two parameters, both independently estimated) and applicability across biomes and plant functional types. Thereby it provides a theoretical underpinning, grounded in eco-evolutionary principles, for large-scale analysis of the CO2and water exchanges between atmosphere and land.


2021 ◽  
Vol 11 (23) ◽  
pp. 11212
Author(s):  
Olav J. M. van Duin ◽  
Suzanne J. M. H. Hulscher ◽  
Jan S. Ribberink

In this paper we derive a new morphological model, with an extended version of the sediment transport model for the mean step length (the average distance travelled by sediment particles), in which this mean step length depends on the mean bed shear stress. This model makes the step length increase with increasing flow, in line with previous experimental results. To account for suspension and the large-scale turbulent structures in rivers, the step length also depends explicitly on water depth. This approach enabled modelling of the transition from dunes to the upper-stage plane bed. It was shown that by increasing the step length, the lag between shear stress and bed load transport rate increases, and the dunes eventually become smoother and lower, until finally the dunes wash out. The newly adopted model approach is tested successfully with a synthetic data set from the literature, where plane bed conditions are indeed reached in the model, similar to the results of a more advanced model. It is shown that with increasing discharge, the flow increases, which leads to higher step length and to the washing out of the dunes. Although the present model still overestimates the dune height for river cases, the potential of the model concept for river dune dynamics, including the transition to upper-stage plane bed, is shown. The model results indicate that, if a transition to upper-stage plane bed occurs in a realistic river scenario, a reduction of the water depth of approximately 0.5 m can occur.


1966 ◽  
Vol 24 ◽  
pp. 170-180
Author(s):  
D. L. Crawford

Early in the 1950's Strömgren (1, 2, 3, 4, 5) introduced medium to narrow-band interference filter photometry at the McDonald Observatory. He used six interference filters to obtain two parameters of astrophysical interest. These parameters he calledlandc, for line and continuum hydrogen absorption. The first measured empirically the absorption line strength of Hβby means of a filter of half width 35Å centered on Hβand compared to the mean of two filters situated in the continuum near Hβ. The second index measured empirically the Balmer discontinuity by means of a filter situated below the Balmer discontinuity and two above it. He showed that these two indices could accurately predict the spectral type and luminosity of both B stars and A and F stars. He later derived (6) an indexmfrom the same filters. This index was a measure of the relative line blanketing near 4100Å compared to two filters above 4500Å. These three indices confirmed earlier work by many people, including Lindblad and Becker. References to this earlier work and to the systems discussed today can be found in Strömgren's article inBasic Astronomical Data(7).


2000 ◽  
Vol 151 (10) ◽  
pp. 385-397
Author(s):  
Bernard Primault

Many years ago, a model was elaborated to calculate the«beginning of the vegetation's period», based on temperatures only (7 days with +5 °C temperature or more). The results were correlated with phenological data: the beginning of shoots with regard to spruce and larch. The results were not satisfying, therefore, the value of the two parameters of the first model were modified without changing the second one. The result, however, was again not satisfying. Research then focused on the influence of cumulated temperatures over thermal thresholds. Nevertheless, the results were still not satisfying. The blossoming of fruit trees is influenced by the mean temperature of a given period before the winter solstice. Based on this knowledge, the study evaluated whether forest trees could also be influenced by temperature or sunshine duration of a given period in the rear autumn. The investigation was carried through from the first of January on as well as from the date of snow melt of the following year. In agricultural meteorology, the temperature sums are often interrelated with the sunshine duration, precipitation or both. However,the results were disappointing. All these calculations were made for three stations situated between 570 and 1560 m above sea-level. This allowed to draw curves of variation of the two first parameters (number of days and temperature) separately for each species observed. It was finally possible to specify the thus determined curves with data of three other stations situated between the first ones. This allows to calculate the flushing of the two tree species, if direct phenological observation is lacking. This method, however, is only applicable for the northern part of the Swiss Alps.


2009 ◽  
Vol 28 (11) ◽  
pp. 2737-2740
Author(s):  
Xiao ZHANG ◽  
Shan WANG ◽  
Na LIAN

Author(s):  
Eun-Young Mun ◽  
Anne E. Ray

Integrative data analysis (IDA) is a promising new approach in psychological research and has been well received in the field of alcohol research. This chapter provides a larger unifying research synthesis framework for IDA. Major advantages of IDA of individual participant-level data include better and more flexible ways to examine subgroups, model complex relationships, deal with methodological and clinical heterogeneity, and examine infrequently occurring behaviors. However, between-study heterogeneity in measures, designs, and samples and systematic study-level missing data are significant barriers to IDA and, more broadly, to large-scale research synthesis. Based on the authors’ experience working on the Project INTEGRATE data set, which combined individual participant-level data from 24 independent college brief alcohol intervention studies, it is also recognized that IDA investigations require a wide range of expertise and considerable resources and that some minimum standards for reporting IDA studies may be needed to improve transparency and quality of evidence.


2020 ◽  
Vol 47 (3) ◽  
pp. 547-560 ◽  
Author(s):  
Darush Yazdanfar ◽  
Peter Öhman

PurposeThe purpose of this study is to empirically investigate determinants of financial distress among small and medium-sized enterprises (SMEs) during the global financial crisis and post-crisis periods.Design/methodology/approachSeveral statistical methods, including multiple binary logistic regression, were used to analyse a longitudinal cross-sectional panel data set of 3,865 Swedish SMEs operating in five industries over the 2008–2015 period.FindingsThe results suggest that financial distress is influenced by macroeconomic conditions (i.e. the global financial crisis) and, in particular, by various firm-specific characteristics (i.e. performance, financial leverage and financial distress in previous year). However, firm size and industry affiliation have no significant relationship with financial distress.Research limitationsDue to data availability, this study is limited to a sample of Swedish SMEs in five industries covering eight years. Further research could examine the generalizability of these findings by investigating other firms operating in other industries and other countries.Originality/valueThis study is the first to examine determinants of financial distress among SMEs operating in Sweden using data from a large-scale longitudinal cross-sectional database.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1021
Author(s):  
Bernhard Dorweiler ◽  
Pia Elisabeth Baqué ◽  
Rayan Chaban ◽  
Ahmed Ghazy ◽  
Oroa Salem

As comparative data on the precision of 3D-printed anatomical models are sparse, the aim of this study was to evaluate the accuracy of 3D-printed models of vascular anatomy generated by two commonly used printing technologies. Thirty-five 3D models of large (aortic, wall thickness of 2 mm, n = 30) and small (coronary, wall thickness of 1.25 mm, n = 5) vessels printed with fused deposition modeling (FDM) (rigid, n = 20) and PolyJet (flexible, n = 15) technology were subjected to high-resolution CT scans. From the resulting DICOM (Digital Imaging and Communications in Medicine) dataset, an STL file was generated and wall thickness as well as surface congruency were compared with the original STL file using dedicated 3D engineering software. The mean wall thickness for the large-scale aortic models was 2.11 µm (+5%), and 1.26 µm (+0.8%) for the coronary models, resulting in an overall mean wall thickness of +5% for all 35 3D models when compared to the original STL file. The mean surface deviation was found to be +120 µm for all models, with +100 µm for the aortic and +180 µm for the coronary 3D models, respectively. Both printing technologies were found to conform with the currently set standards of accuracy (<1 mm), demonstrating that accurate 3D models of large and small vessel anatomy can be generated by both FDM and PolyJet printing technology using rigid and flexible polymers.


Sign in / Sign up

Export Citation Format

Share Document