scholarly journals Human antibody response to dengue virus: implications for dengue vaccine design

2016 ◽  
Vol 44 (1) ◽  
Author(s):  
Meng Ling Moi ◽  
Tomohiko Takasaki ◽  
Ichiro Kurane
2013 ◽  
Vol 94 (10) ◽  
pp. 2191-2201 ◽  
Author(s):  
Xiao-Quan Li ◽  
Li-Wen Qiu ◽  
Yue Chen ◽  
Kun Wen ◽  
Jian-Piao Cai ◽  
...  

Dengue virus (DENV) is a mosquito-borne virus that causes severe health problems. An effective tetravalent dengue vaccine candidate that can provide life-long protection simultaneously against all four DENV serotypes is highly anticipated. A better understanding of the antibody response to DENV envelope protein domain III (EDIII) may offer insights into vaccine development. Here, we identified 25 DENV cross-reactive mAbs from immunization with Pichia pastoris-expressed EDIII of a single or all four serotype(s) using a prime–boost protocol, and through pepscan analysis found that 60 % of them (15/25) specifically recognized the same highly conserved linear epitope aa 309–320 of EDIII. All 15 complex-reactive mAbs exhibited significant cross-reactivity with recombinant EDIII from all DENV serotypes and also with C6/36 cells infected with DENV-1, -2, -3 and -4. However, neutralization assays indicated that the majority of these 15 mAbs were either moderately or weakly neutralizing. Through further epitope mapping by yeast surface display, two residues in the AB loop, Q316 and H317, were discovered to be critical. Three-dimensional modelling analysis suggests that this epitope is surface exposed on EDIII but less accessible on the surface of the E protein dimer and trimer, especially on the surface of the mature virion. It is concluded that EDIII as an immunogen may elicit cross-reactive mAbs toward an epitope that is not exposed on the virion surface, therefore contributing inefficiently to the mAbs neutralization potency. Therefore, the prime–boost strategy of EDIII from a single serotype or four serotypes mainly elicited a poorly neutralizing, cross-reactive antibody response to the conserved AB loop of EDIII.


2021 ◽  
Author(s):  
Abdullah M Izmirly ◽  
Adam-Nicolas Pelletier ◽  
Jennifer Connors ◽  
Bhavani Taramangalam ◽  
Sawsan O. Alturki ◽  
...  

AbstractIt has been estimated that more than 390 million people are infected with Dengue virus every year; around 96 millions of these infections result in clinical pathologies. To date, there is only one licensed viral vector-based Dengue virus vaccine CYD-TDV approved for use in dengue endemic areas. While initially approved for administration independent of serostatus, the current guidance only recommends the use of this vaccine for seropositive individuals. Therefore, there is a critical need for investigating the influence of Dengue virus serostatus and immunological mechanisms that influence vaccine outcome. Here, we provide comprehensive evaluation of sero-status and host immune factors that correlate with robust immune responses to a Dengue virus vector based tetravalent vaccine (TV003) in a Phase II clinical cohort of human participants. We observed that sero-positive individuals demonstrate a much stronger immune response to the TV003 vaccine. Our multi-layered immune profiling revealed that sero-positive subjects have increased baseline/pre-vaccination frequencies of circulating T follicular helper (cTfh) cells and the Tfh related chemokine CXCL13/BLC. Importantly, this baseline/pre-vaccination cTfh profile correlated with the vaccinees’ ability to launch neutralizing antibody response against all four sero-types of Dengue virus, an important endpoint for Dengue vaccine clinical trials. Overall, we provide novel insights into the favorable cTfh related immune status that persists in Dengue virus sero-positive individuals that correlate with their ability to mount robust vaccine specific immune responses. Such detailed interrogation of cTfh cell biology in the context of clinical vaccinology will help uncover mechanisms and targets for favorable immuno-modulatory agents.Author summaryDengue virus (DENV) is a worldwide threat that causes significant health and economic burden. Currently, there are several challenges in the development of a DENV vaccine including the existence of four different serotypes all; capable of causing disease and antibody dependent enhancement (ADE). For complete protection, a vaccine must be able to generate neutralizing antibodies against all 4 serotypes to avoid ADE. Currently, there is one licensed DENV vaccine, CYD-TDV (DENGVAXIATM). However, this vaccine is only efficacious in protecting against severe disease in DENV seropositive individuals therefore serostatus effect must be further studied for optimal vaccine design. A subset of CD4+ T cells called T-follicular helper (Tfh) cells have been well known to play a major role in aiding high affinity antibody production. Therefore, we chose to look at subsets of Tfh and the cytokines they produce in human blood that can serve as biomarkers for effective vaccine design. We found that DENV sero-positive participants had increased pre-vaccination frequencies of Tfh cells and higher levels of the Tfh related chemokine CXCL13/BLC that plays a role in directing antigen-specific responses. This pre-vaccination Tfh profile and CXCL13/BLC are then correlated positively with the vaccinees’ ability to produce neutralizing antibody against all four sero-types (breadth of the Response) of DENV, an important goal for all DENV vaccine trials.


Viruses ◽  
2011 ◽  
Vol 3 (12) ◽  
pp. 2374-2395 ◽  
Author(s):  
Wahala M. P. B. Wahala ◽  
Aravinda M. de Silva

Vaccines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 785
Author(s):  
Maurizio Guida ◽  
Daniela Terracciano ◽  
Michele Cennamo ◽  
Federica Aiello ◽  
Evelina La Civita ◽  
...  

Objective: The objective of this research is to demonstrate the release of SARS-CoV-2 Spike (S) antibodies in human milk samples obtained by patients who have been vaccinated with mRNABNT162b2 vaccine. Methods: Milk and serum samples were collected in 10 volunteers 20 days after the first dose and 7 seven days after the second dose of the mRNABNT162b2 vaccine. Anti-SARS-CoV-2 S antibodies were measured by the Elecsys® Anti-SARS-CoV-2 S ECLIA assay (Roche Diagnostics AG, Rotkreuz, Switzerland), a quantitative electrochemiluminescence immunometric method. Results: At first sample, anti-SARS-CoV-2 S antibodies were detected in all serum samples (103.9 ± 54.9 U/mL) and only in two (40%) milk samples with a low concentration (1.2 ± 0.3 U/mL). At the second sample, collected 7 days after the second dose, anti-SARS-CoV-2 S antibodies were detected in all serum samples (3875.7 ± 3504.6 UI/mL) and in all milk samples (41.5 ± 47.5 UI/mL). No correlation was found between the level of serum and milk antibodies; the milk antibodies/serum antibodies ratio was on average 2% (range: 0.2–8.4%). Conclusion: We demonstrated a release of anti-SARS-CoV-2 S antibodies in the breast milk of women vaccinated with mRNABNT162b2. Vaccinating breastfeeding women could be a strategy to protect their infants from COVID-19 infection.


2015 ◽  
Vol 14 (2) ◽  
pp. 94-94
Author(s):  
Sarah Crunkhorn

Sign in / Sign up

Export Citation Format

Share Document