scholarly journals 3D - Printed Patient Specific Instrumentation in Corrective Osteotomy of the Femur and Pelvis: A Review of the Literature

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Njalalle Baraza ◽  
Chris Chapman ◽  
Sima Zakani ◽  
Kishore Mulpuri

Abstract Background The paediatric patient population has considerable variation in anatomy. The use of Computed Tomography (CT)-based digital models to design three-dimensionally printed patient specific instrumentation (PSI) has recently been applied for correction of deformity in orthopedic surgery. This review sought to determine the existing application of this technology currently in use within paediatric orthopaedics, and assess the potential benefits that this may provide to patients and surgeons. Methods A review was performed of MEDLINE, EMBASE, and CENTRAL for published literature, as well as Web of Science and clinicaltrials.gov for grey literature. The search strategy revolved around the research question: “What is the clinical impact of using 3D printed PSI for proximal femoral or pelvic osteotomy in paediatric orthopaedics?” Two reviewers, using predetermined inclusion criteria, independently performed title and abstract review in order to select articles for full text review. Data extracted included effect on operating time and intraoperative image use, as well as osteotomy and screw positioning accuracy. Data were combined in a narrative synthesis; meta-analysis was not performed given the diversity of study designs and interventions. Results In total, ten studies were included: six case control studies, three case series and a case report. Five studies directly compared operating time using PSI to conventional techniques, with two showing a significant decrease in the number of intraoperative images and operative time. Eight studies reported improved accuracy in executing the surgical plan compared to conventional methods. Conclusion Compared to conventional methods of performing femoral or pelvic osteotomy, use of PSI has led to improved accuracy and precision, decreased procedure times, and decreased intra-operative imaging requirements. Additionally, the technology has become more cost effective and accessible since its initial inception and use.

BMJ Open ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. e041129
Author(s):  
Lawrence Chun Man Lau ◽  
Elvis Chun Sing Chui ◽  
Jason Chi Ho Fan ◽  
Gene Chi Wai Man ◽  
Yuk Wah Hung ◽  
...  

IntroductionHigh tibial osteotomy (HTO) is a treatment of choice for active adult with knee osteoarthritis. With advancement in CT imaging with three-dimensional (3D) model reconstruction, virtual planning and 3D printing, patient-specific instrumentation (PSI) in form of cutting jigs is employed to improve surgical accuracy and outcome of HTO. The aim of this randomised controlled trial (RCT) is to explore the surgical outcomes of HTO for the treatment of medial compartment knee osteoarthritis with or without a 3D printed patient-specific jig.Methods and analysisA double-blind RCT will be conducted with patients and outcome assessors blinded to treatment allocation. This meant that neither the patients nor the outcome assessors would know the actual treatment allocated during the trial. Thirty-six patients with symptomatic medial compartment knee osteoarthritis fulfilling our inclusion criteria will be invited to participate the study. Participants will be randomly allocated to one of two groups (1:1 ratio): operation with 3D printed patient-specific jig or operation without jig. Measurements will be taken before surgery (baseline) and at postoperatively (6, 12 and 24 months). The primary outcome includes radiological accuracy of osteotomy. Secondary outcomes include a change in knee function from baseline to postoperatively as measured by three questionnaires: Knee Society Scores (Knee Scores and Functional Scores), Oxford Knee Scores and pain visual analogue scale (VAS) score.Ethics and disseminationEthical approval has been obtained from the Joint Chinese University of Hong Kong – New Territories East Cluster Clinical Research Ethics Committee (CREC no. 2019.050), in accordance with the Declaration of Helsinki. The results will be presented at international scientific meetings and through publications in peer-reviewed journals.Trial registration numberNCT04000672; Pre-results.


2016 ◽  
Vol 01 (04) ◽  
pp. 1650005
Author(s):  
A. Darwood ◽  
R. Secoli ◽  
S. A. Bowyer ◽  
A. Leibinger ◽  
R. Richards ◽  
...  

Optimal orthopaedic implant placement is a major contributing factor to the long term success of all common joint arthroplasty procedures. Devices such as three-dimensional (3D) printed, bespoke guides and orthopaedic robots are extensively described in the literature and have been shown to enhance prosthesis placement accuracy. These technologies, however, have significant drawbacks, such as logistical and temporal inefficiency, high cost, cumbersome nature and difficult theatre integration. A new technology for the rapid intraoperative production of patient-specific instrumentation, which overcomes many of the disadvantages of existing technologies, is presented here. The technology comprises a reusable table side machine, bespoke software and a disposable element comprising a region of standard geometry and a body of moldable material. Anatomical data from computed tomography (CT) scans of 10 human scapulae was collected and, in each case, the optimal glenoid guidewire position was digitally planned and recorded. The achieved accuracy compared to the pre-operative bespoke plan was measured in all glenoids, from both a conventional group and a guided group (GG). The technology was successfully able to intraoperatively produce sterile, patient-specific guides according to a pre-operative plan in 5[Formula: see text]min, with no additional manufacturing required prior to surgery. Additionally, the average guidewire placement accuracy was [Formula: see text][Formula: see text]mm and 6.82[Formula: see text] in the manual group, and [Formula: see text][Formula: see text]mm and [Formula: see text] in the guided group, also demonstrating a statistically significant improvement.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yunhe Mao ◽  
Yang Xiong ◽  
Qi Li ◽  
Gang Chen ◽  
Weili Fu ◽  
...  

Purpose. The purpose of this study was to compare the accuracy and clinical outcomes of the medial open wedge high tibial osteotomy (MOWHTO) using a three-dimensional (3D-) printed patient-specific instrumentation (PSI) with that of conventional surgical techniques. Methods. A prospective comparative study which included 18 patients who underwent MOWHTO using 3D-printed PSI technique (3D-printed group) and 19 patients with conventional technique was conducted from Jan 2019 to Dec 2019. After the preoperative planning, 3D-printed PSI (cutting guide model) was used in MOWHTO for 3D-printed group, while freehand osteotomies were adopted in the conventional group. The accuracy of MOWHTO for each method was compared using the radiological index obtained preoperatively and postoperatively, including mechanical femorotibial angle (mFTA) and medial mechanical proximal tibial angle (mMPTA), and correction error. Regular clinical outcomes were also compared between the 2 groups. Results. The correction errors in the 3D-printed group were significantly lower than the conventional group (mFTA, 0.2 ° ± 0.6 ° vs. 1.2 ° ± 1.4 ° , P = 0.004 ) (mMPTA, 0.1 ° ± 0.4 ° vs. 2.2 ° ± 1.8 ° , P < 0.00001 ). There was a significantly shorter duration ( P < 0.00001 ) and lower radiation exposures ( P < 0.00001 ) for the osteotomy procedure in the 3D-printed group than in the conventional group. There were significantly higher subjective IKDC scores ( P = 0.009 ) and Lysholm scores ( P = 0.03 ) in the 3D-printed group at the 3-month follow-up, but not significantly different at other time points. Fewer complications occurred in the 3D-printed group. Conclusions. With the assistance of the 3D-printed patient-specific cutting guide model, a safe and feasible MOWHTO can be conducted with superior accuracy than the conventional technique.


SICOT-J ◽  
2018 ◽  
Vol 4 ◽  
pp. 29 ◽  
Author(s):  
Ikram Nizam ◽  
Ashish V. Batra

Introduction: We conducted this study to determine if the pre-surgical patient specific instrumented planning based on Computed Tomography (CT) scans can accurately predict each of the femoral and tibial resections performed through 3D printed cutting guides. The technique helps in optimization of component positioning determined by accurate bone resection and hence overall alignment thereby reducing errors. Methods: Prophecy evolution medial pivot patient specific instrumented knee replacement systems were used for end stage arthrosis in all consecutive cases over a period of 20 months by a single surgeon. All resections (4 femoral and 2 tibial) were measured using a vernier callipers intraoperatively. These respective measurements were then compared with the preoperative CT predicted bone resection surgical plan to determine margins of errors that were categorized into 7 groups (0 mm to ≥2.6 mm). Results: A total of 3618 measurements (averaged to 1206) were performed in 201 knees (105 right and 96 left) in 188 patients (112 females and 76 males) with an average age of 67.72 years (44 to 90 years) and average BMI of 32.3 (25.1 to 42.3). 94% of all collected resection readings were below the error margin of ≤1.5 mm of which 90% showed resection error of ≤1 mm. Mean error of different resections were ≤0.60 mm (P ≤ 0.0001). In 24% of measurements there were no errors or deviations from the templated resection (0.0 mm). Conclusion: The 3D printed cutting blocks with slots for jigs accurately predict bone resections in patient specific instrumentation total knee arthroplasty which would directly affect component positioning.


Hand ◽  
2017 ◽  
Vol 13 (6) ◽  
pp. 627-636 ◽  
Author(s):  
Stefanie Hirsiger ◽  
Andreas Schweizer ◽  
Junichi Miyake ◽  
Ladislav Nagy ◽  
Philipp Fürnstahl

Background: Surgical planning of corrective osteotomies is traditionally based on conventional radiographs and clinical findings. In the past 10 years, 3-dimensional (3D) preoperative planning approaches with patient-specific guides have been developed. However, the application of this technology to posttraumatic deformities of the metacarpals and phalangeal bones has not yet been investigated. Our goal was to evaluate the feasibility of the surgical application to the latter and to evaluate the extent and precision of correction. Methods: We present results of 6 patients (8 osteotomies) treated with phalangeal or metacarpal corrective osteotomy. Deformities were located in the third ray in 1, fourth ray in 3, and fifth ray in 4 cases. Six malunited metacarpal bones (1 intra-articular) and 2 deformed proximal phalanges were treated. Computer-based 3D preoperative planning using the contralateral hand as a template allowed the production of 3D-printed patient-specific guides that were used intraoperatively for navigation. The precision of the reduction was assessed using pre- and postoperative computed tomography by comparing the postoperative bone model with the preoperatively simulated osteotomy. Range of motion and grip strength were documented pre- and postoperatively. Results: The mean follow-up time was 6 months (range: 5-11 months). Rotational deformity was reduced from a mean of 10.0° (range: 7.2°-19.3°) preoperatively to 2.3° (range: 0.7°-3.7°) postoperatively, and translational incongruency decreased from a mean of 1.4 mm (range: 0.7-2.8 mm) to 0.4 mm (range: 0.1-0.9 mm). Conclusion: Preliminary results indicate that a precise reduction for corrective osteotomies of metacarpal and phalangeal bones can be achieved by using 3D planning and patient-specific guides.


Author(s):  
G. Caiti ◽  
J. G. G. Dobbe ◽  
S. D. Strackee ◽  
M. H. M. van Doesburg ◽  
G. J. Strijkers ◽  
...  

Abstract Purpose In corrective osteotomy of the distal radius, patient-specific 3D printed surgical guides or optical navigation systems are often used to navigate the surgical saw. The purpose of this cadaver study is to present and evaluate a novel cast-based guiding system to transfer the virtually planned corrective osteotomy of the distal radius. Methods We developed a cast-based guiding system composed of a cast featuring two drilling slots as well as an external cutting guide that was used to orient the surgical saw for osteotomy in the preoperatively planned position. The device was tested on five cadaver specimens with different body fat percentages. A repositioning experiment was performed to assess the precision of replacing an arm in the cast. Accuracy and precision of drilling and cutting using the proposed cast-based guiding system were evaluated using the same five cadaver arms. CT imaging was used to quantify the positioning errors in 3D. Results For normal-weight cadavers, the resulting total translation and rotation repositioning errors were ± 2 mm and ± 2°. Across the five performed surgeries, the median accuracy and Inter Quartile Ranges (IQR) of pre-operatively planned drilling trajectories were 4.3° (IQR = 2.4°) and 3.1 mm (IQR = 4.9 mm). Median rotational and translational errors in transferring the pre-operatively planned osteotomy plane were and 3.9° (IQR = 4.5°) and 2.6 mm (IQR = 4.2 mm), respectively. Conclusion For normal weight arm specimens, navigation of corrective osteotomy via a cast-based guide resulted in transfer errors comparable to those using invasive surgical guides. The promising positioning capabilities justify further investigating whether the method could ultimately be used in a clinical setting, which could especially be of interest when used with less invasive osteosynthesis material.


Author(s):  
Vicente Jesús León-Muñoz ◽  
Mirian López-López ◽  
Alonso José Lisón-Almagro ◽  
Francisco Martínez-Martínez ◽  
Fernando Santonja-Medina

AbstractPatient-specific instrumentation (PSI) has been introduced to simplify and make total knee arthroplasty (TKA) surgery more precise, effective, and efficient. We performed this study to determine whether the postoperative coronal alignment is related to preoperative deformity when computed tomography (CT)-based PSI is used for TKA surgery, and how the PSI approach compares with deformity correction obtained with conventional instrumentation. We analyzed pre-and post-operative full length standing hip-knee-ankle (HKA) X-rays of the lower limb in both groups using a convention > 180 degrees for valgus alignment and < 180 degrees for varus alignment. For the PSI group, the mean (± SD) pre-operative HKA angle was 172.09 degrees varus (± 6.69 degrees) with a maximum varus alignment of 21.5 degrees (HKA 158.5) and a maximum valgus alignment of 14.0 degrees. The mean post-operative HKA was 179.43 degrees varus (± 2.32 degrees) with a maximum varus alignment of seven degrees and a maximum valgus alignment of six degrees. There has been a weak correlation among the values of the pre- and postoperative HKA angle. The adjusted odds ratio (aOR) of postoperative alignment outside the range of 180 ± 3 degrees was significantly higher with a preoperative varus misalignment of 15 degrees or more (aOR: 4.18; 95% confidence interval: 1.35–12.96; p = 0.013). In the control group (conventional instrumentation), this loss of accuracy occurs with preoperative misalignment of 10 degrees. Preoperative misalignment below 15 degrees appears to present minimal influence on postoperative alignment when a CT-based PSI system is used. The CT-based PSI tends to lose accuracy with preoperative varus misalignment over 15 degrees.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1021
Author(s):  
Bernhard Dorweiler ◽  
Pia Elisabeth Baqué ◽  
Rayan Chaban ◽  
Ahmed Ghazy ◽  
Oroa Salem

As comparative data on the precision of 3D-printed anatomical models are sparse, the aim of this study was to evaluate the accuracy of 3D-printed models of vascular anatomy generated by two commonly used printing technologies. Thirty-five 3D models of large (aortic, wall thickness of 2 mm, n = 30) and small (coronary, wall thickness of 1.25 mm, n = 5) vessels printed with fused deposition modeling (FDM) (rigid, n = 20) and PolyJet (flexible, n = 15) technology were subjected to high-resolution CT scans. From the resulting DICOM (Digital Imaging and Communications in Medicine) dataset, an STL file was generated and wall thickness as well as surface congruency were compared with the original STL file using dedicated 3D engineering software. The mean wall thickness for the large-scale aortic models was 2.11 µm (+5%), and 1.26 µm (+0.8%) for the coronary models, resulting in an overall mean wall thickness of +5% for all 35 3D models when compared to the original STL file. The mean surface deviation was found to be +120 µm for all models, with +100 µm for the aortic and +180 µm for the coronary 3D models, respectively. Both printing technologies were found to conform with the currently set standards of accuracy (<1 mm), demonstrating that accurate 3D models of large and small vessel anatomy can be generated by both FDM and PolyJet printing technology using rigid and flexible polymers.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1910
Author(s):  
Hun-Jin Jeong ◽  
Se-Won Lee ◽  
Myoung Wha Hong ◽  
Young Yul Kim ◽  
Kyoung Duck Seo ◽  
...  

The meniscus has poor intrinsic regenerative capability, and its injury inevitably leads to articular cartilage degeneration. Although there are commercialized off-the-shelf alternatives to achieve total meniscus regeneration, each has its own shortcomings such as individualized size matching issues and inappropriate mechanical properties. We manufactured a polycaprolactone-based patient-specific designed framework via a Computed Tomography scan images and 3D-printing technique. Then, we completed the hybrid-scaffold by combining the 3D-printed framework and mixture micro-size composite which consists of polycaprolactone and sodium chloride to create a cell-friendly microenvironment. Based on this hybrid-scaffold with an autograft cell source (fibrochondrocyte), we assessed mechanical and histological results using the rabbit total meniscectomy model. At postoperative 12-week, hybrid-scaffold achieved neo-meniscus tissue formation, and its shape was maintained without rupture or break away from the knee joint. Histological and immunohistochemical analysis results showed obvious ingrowth of the fibroblast-like cells and chondrocyte cells as well as mature lacunae that were embedded in the extracellular matrix. Hybrid-scaffolding resulted in superior shape matching as compared to original meniscus tissue. Histological analysis showed evidence of extensive neo-meniscus cell ingrowth. Additionally, the hybrid-scaffold did not induce osteoarthritis on the femoral condyle surface. The 3D-printed hybrid-scaffold may provide a promising approach that can be applied to those who received total meniscal resection, using patient-specific design and autogenous cell source.


2021 ◽  
pp. 155633162199633
Author(s):  
Mehran Ashouri-Sanjani ◽  
Shima Mohammadi-Moghadam ◽  
Parisa Azimi ◽  
Navid Arjmand

Background: Pedicle screw (PS) placement has been widely used in fusion surgeries on the thoracic spine. Achieving cost-effective yet accurate placements through nonradiation techniques remains challenging. Questions/Purposes: Novel noncovering lock-mechanism bilateral vertebra-specific drill guides for PS placement were designed/fabricated, and their accuracy for both nondeformed and deformed thoracic spines was tested. Methods: One nondeformed and 1 severe scoliosis human thoracic spine underwent computed tomographic (CT) scanning, and 2 identical proportions of each were 3-dimensional (3D) printed. Pedicle-specific optimal (no perforation) drilling trajectories were determined on the CT images based on the entry point/orientation/diameter/length of each PS. Vertebra-specific templates were designed and 3D printed, assuring minimal yet firm contacts with the vertebrae through a noncovering lock mechanism. One model of each patient was drilled using the freehand and one using the template guides (96 pedicle drillings). Postoperative CT scans from the models with the inserted PSs were obtained and superimposed on the preoperative planned models to evaluate deviations of the PSs. Results: All templates fitted their corresponding vertebra during the simulated operations. As compared with the freehand approach, PS placement deviations from their preplanned positions were significantly reduced: for the nonscoliosis model, from 2.4 to 0.9 mm for the entry point, 5.0° to 3.3° for the transverse plane angle, 7.1° to 2.2° for the sagittal plane angle, and 8.5° to 4.1° for the 3D angle, improving the success rate from 71.7% to 93.5%. Conclusions: These guides are valuable, as the accurate PS trajectory could be customized preoperatively to match the patients’ unique anatomy. In vivo studies will be required to validate this approach.


Sign in / Sign up

Export Citation Format

Share Document