scholarly journals A review and guide to creating patient specific 3D printed anatomical models from MRI for benign gynecologic surgery

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Teresa E. Flaxman ◽  
Carly M. Cooke ◽  
Olivier X. Miguel ◽  
Adnan M. Sheikh ◽  
Sukhbir S. Singh

Abstract Background Patient specific three-dimensional (3D) models can be derived from two-dimensional medical images, such as magnetic resonance (MR) images. 3D models have been shown to improve anatomical comprehension by providing more accurate assessments of anatomical volumes and better perspectives of structural orientations relative to adjacent structures. The clinical benefit of using patient specific 3D printed models have been highlighted in the fields of orthopaedics, cardiothoracics, and neurosurgery for the purpose of pre-surgical planning. However, reports on the clinical use of 3D printed models in the field of gynecology are limited. Main text This article aims to provide a brief overview of the principles of 3D printing and the steps required to derive patient-specific, anatomically accurate 3D printed models of gynecologic anatomy from MR images. Examples of 3D printed models for uterine fibroids and endometriosis are presented as well as a discussion on the barriers to clinical uptake and the future directions for 3D printing in the field of gynecological surgery. Conclusion Successful gynecologic surgery requires a thorough understanding of the patient’s anatomy and burden of disease. Future use of patient specific 3D printed models is encouraged so the clinical benefit can be better understood and evidence to support their use in standard of care can be provided.

2020 ◽  
Vol 11 ◽  
pp. 381
Author(s):  
Moneer K. Faraj ◽  
Samer S. Hoz ◽  
Amjad J. Mohammad

Background: In the present study, we aim to develop simulation models based on computed tomography angiography images of intracranial aneurysms (IAs) and their parent vessels using three-dimensional (3D) printing technology. The study focuses on the value of these 3D models in presurgical planning and intraoperative navigation and ultimately their impact on patient outcomes. To the best of our knowledge, this is the first report of its kind from a war-torn country, like Iraq. Methods: This is a prospective study of a series of 11, consecutively enrolled, patients suffering from IAs for the period between February and September 2019. The study represents a collaboration between the two major neurosurgical centers in Baghdad/Iraq; Neurosciences Teaching Hospital and Neurosurgery Teaching Hospital. We analyzed the data of eleven patients with IAs treated by microsurgical clipping. These data include patient demographics, clinical, surgical, and outcomes along with the data of the 3D-printed replica used in these surgeries. All cases were operated on by one surgeon. Results: Our study included 11 patients, with a total of 11 aneurysms clipped. The mean age was 44 ± 8, with a median of 42.5 and a range of 35–61 years. About 60% of our patients were female with a female-to-male ratio of 1:5. About 60% of the aneurysms were located at the anterior communicating artery (Acom) while the remaining 40% were equally distributed between the posterior communicating and internal carotid arteries bifurcation. The standard pterional approach was followed in 50% of cases, whereas the other 50% of patients were treated through the lateral supraorbital approach. About 90% (n = 9) of the patients had a Glasgow Outcome Scale (GOS) of 5 and 10% had a GOS of 4. The 3D-printed models successfully replicated the aneurysm size, location, and relation to the parent vessel with 100% accuracy and were used for intraoperative guidance. The average production time was 24–48 h and the production cost was 10–20 US dollars. Conclusion: 3D printing is a promising technology that is rapidly penetrating the field of neurosurgery. In particular, the use of 3D-printed patient-matched, anatomically accurate replicas of the cerebral vascular tree is valuable adjunct to the microsurgical clipping of IAs, and our study conclusions support this concept. However, both the feasibility and clinical utility of 3D printing remain the subject of much, ongoing investigations.


2021 ◽  
Vol 7 (1) ◽  
pp. 166-170
Author(s):  
Valentin Kraft ◽  
Christian Schumann ◽  
Daniela Salzmann ◽  
Hans Nopper ◽  
Thomas Lück ◽  
...  

Abstract Three-dimensional visualizations and 3D-printed organs are used increasingly for teaching, surgery planning, patient education, and interventions. Hence, pipelines for the creation of the necessary geometric data from CT or MR images on a per-patient basis are needed. Furthermore, modern 3D printing techniques enable new possibilities for the models with regard to color, softness, and textures. However, to utilize these new features, the respective information has to be derived from the medical images in addition to the geometry of the relevant organ structures. In this work, we propose an automatable pipeline for the creation of realistic, patientspecific 3D-models for visualization and 3D printing in the context of liver surgery and discuss remaining challenges.


2021 ◽  
Vol 7 ◽  
Author(s):  
Jasamine Coles-Black ◽  
Damien Bolton ◽  
Jason Chuen

Introduction: 3D printed patient-specific vascular phantoms provide superior anatomical insights for simulating complex endovascular procedures. Currently, lack of exposure to the technology poses a barrier for adoption. We offer an accessible, low-cost guide to producing vascular anatomical models using routine CT angiography, open source software packages and a variety of 3D printing technologies.Methods: Although applicable to all vascular territories, we illustrate our methodology using Abdominal Aortic Aneurysms (AAAs) due to the strong interest in this area. CT aortograms acquired as part of routine care were converted to representative patient-specific 3D models, and then printed using a variety of 3D printing technologies to assess their material suitability as aortic phantoms. Depending on the technology, phantoms cost $20–$1,000 and were produced in 12–48 h. This technique was used to generate hollow 3D printed thoracoabdominal aortas visible under fluoroscopy.Results: 3D printed AAA phantoms were a valuable addition to standard CT angiogram reconstructions in the simulation of complex cases, such as short or very angulated necks, or for positioning fenestrations in juxtarenal aneurysms. Hollow flexible models were particularly useful for device selection and in planning of fenestrated EVAR. In addition, these models have demonstrated utility other settings, such as patient education and engagement, and trainee and anatomical education. Further study is required to establish a material with optimal cost, haptic and fluoroscopic fidelity.Conclusion: We share our experiences and methodology for developing inexpensive 3D printed vascular phantoms which despite material limitations, successfully mimic the procedural challenges encountered during live endovascular surgery. As the technology continues to improve, 3D printed vascular phantoms have the potential to disrupt how endovascular procedures are planned and taught.


Author(s):  
Chia-An Wu ◽  
Andrew Squelch ◽  
Zhonghua Sun

Aim: To determine a printing material that has both elastic property and radiology equivalence close to real aorta for simulation of endovascular stent graft repair of aortic dissection. Background: With the rapid development of three-dimensional (3D) printing technology, a patient-specific 3D printed model is able to help surgeons to make better treatment plan for Type B aortic dissection patients. However, the radiological properties of most 3D printing materials have not been well characterized. This study aims to investigate the appropriate materials for printing human aorta with mechanical and radiological properties similar to the real aortic computed tomography (CT) attenuation. Objective: Quantitative assessment of CT attenuation of different materials used in 3D printed models of aortic dissection for developing patient-specific 3D printed aorta models to simulate type B aortic dissection. Method: A 25-mm length of aorta model was segmented from a patient’s image dataset with diagnosis of type B aortic dissection. Four different elastic commercial 3D printing materials, namely Agilus A40 and A50, Visijet CE-NT A30 and A70 were selected and printed with different hardness. Totally four models were printed out and conducted CT scanned twice on a 192-slice CT scanner using the standard aortic CT angiography protocol, with and without contrast inside the lumen.Five reference points with region of interest (ROI) of 1.77 mm2 were selected at the aortic wall and intimal flap and their Hounsfield units (HU) were measured and compared with the CT attenuation of original CT images. The comparison between the patient’s aorta and models was performed through a paired-sample t-test to determine if there is any significant difference. Result: The mean CT attenuation of aortic wall of the original CT images was 80.7 HU. Analysis of images without using contrast medium showed that the material of Agilus A50 produced the mean CT attenuation of 82.6 HU, which is similar to that of original CT images. The CT attenuation measured at images acquired with other three materials was significantly lower than that of original images (p<0.05). After adding contrast medium, Visijet CE-NT A30 had an average CT attenuation of 90.6 HU, which is close to that of the original images with statistically significant difference (p>0.05). In contrast, the CT attenuation measured at images acquired with other three materials (Agilus A40, A50 and Visiject CE-NT A70) was 129 HU, 135 HU and 129.6 HU, respectively, which is significantly higher than that of original CT images (p<0.05). Conclusion: Both Visijet CE-NT and Agilus have tensile strength and elongation close to real patient’s tissue properties producing similar CT attenuation. Visijet CE-NT A30 is considered the appropriate material for printing aorta to simulate contrast-enhanced CT imaging of type B aortic dissection. Due to lack of body phantom in the experiments, further research with simulation of realistic anatomical body environment should be conducted.


2018 ◽  
Vol 9 (4) ◽  
pp. 454-458 ◽  
Author(s):  
Sarah A. Chen ◽  
Chin Siang Ong ◽  
Nagina Malguria ◽  
Luca A. Vricella ◽  
Juan R. Garcia ◽  
...  

Purpose: Patients with hypoplastic left heart syndrome (HLHS) present a diverse spectrum of aortic arch morphology. Suboptimal geometry of the reconstructed aortic arch may result from inappropriate size and shape of an implanted patch and may be associated with poor outcomes. Meanwhile, advances in diagnostic imaging, computer-aided design, and three-dimensional (3D) printing technology have enabled the creation of 3D models. The purpose of this study is to create a surgical simulation and training model for aortic arch reconstruction. Description: Specialized segmentation software was used to isolate aortic arch anatomy from HLHS computed tomography scan images to create digital 3D models. Three-dimensional modeling software was used to modify the exported segmented models and digitally design printable customized patches that were optimally sized for arch reconstruction. Evaluation: Life-sized models of HLHS aortic arch anatomy and a digitally derived customized patch were 3D printed to allow simulation of surgical suturing and reconstruction. The patient-specific customized patch was successfully used for surgical simulation. Conclusions: Feasibility of digital design and 3D printing of patient-specific patches for aortic arch reconstruction has been demonstrated. The technology facilitates surgical simulation. Surgical training that leads to an understanding of optimal aortic patch geometry is one element that may potentially influence outcomes for patients with HLHS.


2019 ◽  
Vol 13 (3) ◽  
Author(s):  
Kay S. Hung ◽  
Michael J. Paulsen ◽  
Hanjay Wang ◽  
Camille Hironaka ◽  
Y. Joseph Woo

In recent years, advances in medical imaging and three-dimensional (3D) additive manufacturing techniques have increased the use of 3D-printed anatomical models for surgical planning, device design and testing, customization of prostheses, and medical education. Using 3D-printing technology, we generated patient-specific models of mitral valves from their pre-operative cardiac imaging data and utilized these custom models to educate patients about their anatomy, disease, and treatment. Clinical 3D transthoracic and transesophageal echocardiography images were acquired from patients referred for mitral valve repair surgery and segmented using 3D modeling software. Patient-specific mitral valves were 3D-printed using a flexible polymer material to mimic the precise geometry and tissue texture of the relevant anatomy. 3D models were presented to patients at their pre-operative clinic visit and patient education was performed using either the 3D model or the standard anatomic illustrations. Afterward, patients completed questionnaires assessing knowledge and satisfaction. Responses were calculated based on a 1–5 Likert scale and analyzed using a nonparametric Mann–Whitney test. Twelve patients were presented with a patient-specific 3D-printed mitral valve model in addition to standard education materials and twelve patients were presented with only standard educational materials. The mean survey scores were 64.2 (±1.7) and 60.1 (±5.9), respectively (p = 0.008). The use of patient-specific anatomical models positively impacts patient education and satisfaction, and is a feasible method to open new opportunities in precision medicine.


2020 ◽  
Author(s):  
Michael Yue-Cheng Chen ◽  
Jacob Skewes ◽  
Ryan Daley ◽  
Maria Ann Woodruff ◽  
Nicholas John Rukin

Abstract BackgroundThree-dimensional (3D) printing is a promising technology but the limitations are often poorly understood. We compare different 3D printingmethods with conventional machining techniques in manufacturing meatal urethral dilators which were recently removed from the Australian market. MethodsA prototype dilator was 3D printed vertically orientated on a low cost fused deposition modelling (FDM) 3D printer in polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS). It was also 3D printed horizontally orientated in ABS on a high-end FDM 3D printer with soluble support material, as well as on a SLS 3D printer in medical nylon. The dilator was also machined in stainless steel using a lathe. All dilators were tested mechanically in a custom rig by hanging calibrated weights from the handle until the dilator snapped. ResultsThe horizontally printed ABS dilator experienced failure at a greater load than the vertically printed PLA and ABS dilators respectively (503g vs 283g vs 163g, p < 0.001). The SLS nylon dilator and machined steel dilator did not fail. The steel dilator is most expensive with a quantity of five at 98 USD each, but this decreases to 30 USD each for a quantity of 1000. In contrast, the cost for the SLS dilator is 33 USD each for five and 27 USD each for 1000. ConclusionsAt the current time 3D printing is not a replacement for conventional manufacturing. 3D printing is best used for patient-specific parts, prototyping or manufacturing complex parts that have additional functionality that cannot otherwise beachieved.


2019 ◽  
Vol 29 (06) ◽  
pp. 733-743 ◽  
Author(s):  
Mari Nieves Velasco Forte ◽  
Tarique Hussain ◽  
Arno Roest ◽  
Gorka Gomez ◽  
Monique Jongbloed ◽  
...  

AbstractAdvances in biomedical engineering have led to three-dimensional (3D)-printed models being used for a broad range of different applications. Teaching medical personnel, communicating with patients and relatives, planning complex heart surgery, or designing new techniques for repair of CHD via cardiac catheterisation are now options available using patient-specific 3D-printed models. The management of CHD can be challenging owing to the wide spectrum of morphological conditions and the differences between patients. Direct visualisation and manipulation of the patients’ individual anatomy has opened new horizons in personalised treatment, providing the possibility of performing the whole procedure in vitro beforehand, thus anticipating complications and possible outcomes. In this review, we discuss the workflow to implement 3D printing in clinical practice, the imaging modalities used for anatomical segmentation, the applications of this emerging technique in patients with structural heart disease, and its limitations and future directions.


Author(s):  
Enrico Ferrari ◽  
Michele Gallo ◽  
Changtian Wang ◽  
Lei Zhang ◽  
Maurizio Taramasso ◽  
...  

Abstract Three-dimensional (3D)-printing technologies in cardiovascular surgery have provided a new way to tailor surgical and percutaneous treatments. Digital information from standard cardiac imaging is integrated into physical 3D models for an accurate spatial visualization of anatomical details. We reviewed the available literature and analysed the different printing technologies, the required procedural steps for 3D prototyping, the used cardiac imaging, the available materials and the clinical implications. We have highlighted different materials used to replicate aortic and mitral valves, vessels and myocardial properties. 3D printing allows a heuristic approach to investigate complex cardiovascular diseases, and it is a unique patient-specific technology providing enhanced understanding and tactile representation of cardiovascular anatomies for the procedural planning and decision-making process. 3D printing may also be used for medical education and surgical/transcatheter training. Communication between doctors and patients can also benefit from 3D models by improving the patient understanding of pathologies. Furthermore, medical device development and testing can be performed with rapid 3D prototyping. Additionally, widespread application of 3D printing in the cardiovascular field combined with tissue engineering will pave the way to 3D-bioprinted tissues for regenerative medicinal applications and 3D-printed organs.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Anna Aimar ◽  
Augusto Palermo ◽  
Bernardo Innocenti

Three-dimensional (3D) printing refers to a number of manufacturing technologies that generate a physical model from digital information. Medical 3D printing was once an ambitious pipe dream. However, time and investment made it real. Nowadays, the 3D printing technology represents a big opportunity to help pharmaceutical and medical companies to create more specific drugs, enabling a rapid production of medical implants, and changing the way that doctors and surgeons plan procedures. Patient-specific 3D-printed anatomical models are becoming increasingly useful tools in today’s practice of precision medicine and for personalized treatments. In the future, 3D-printed implantable organs will probably be available, reducing the waiting lists and increasing the number of lives saved. Additive manufacturing for healthcare is still very much a work in progress, but it is already applied in many different ways in medical field that, already reeling under immense pressure with regards to optimal performance and reduced costs, will stand to gain unprecedented benefits from this good-as-gold technology. The goal of this analysis is to demonstrate by a deep research of the 3D-printing applications in medical field the usefulness and drawbacks and how powerful technology it is.


Sign in / Sign up

Export Citation Format

Share Document