scholarly journals Use of termitarium soil as a viable source for biofertilizer and biocontrol

2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Seun Owolabi Adebajo ◽  
Pius Olugbenga Akintokun ◽  
Emmanuel Ezaka ◽  
Abidemi Esther Ojo ◽  
Donald Uzowulu Olannye ◽  
...  

Abstract Background Environmental deterioration arising from the misuse of pesticides and chemical fertilizers in agriculture has resulted in the pursuit of eco-friendly means of growing crop. Evidence has shown that biofertilizers and biocontrol can boost soil fertility and suppress soil pathogens without compromising the safety of the environment. Hence, the study investigated the use of termitarium soil as a viable source for biofertilizer and biocontrol. Results Twenty-seven soil samples were collected from nine different mound soil (household, farm and water bodies in a sterile sample bag). Aliquots of serially diluted samples were plated on nutrient agar, plate count agar, eosin methylene blue agar and MacConkey agar plates. Isolates were identified using standard microbiological techniques. Identified isolates were screened for plant growth-promoting properties using phosphate solubilization test, potassium solubilization test and indole acetic acid production test. Activities of the plant growth-promoting bacteria were carried out using antagonism by diffusible substance method and antagonistic activity of cell-free culture filtrate of bacterial isolates against Ralstonia solanacearum and Fusarium oxysporum. Two hundred bacterial isolates were recovered from the 27 soil samples. The most predominant isolate was Bacillus spp. Out of the 200 bacterial isolates, 57 were positive for phosphate solubilization test, potassium solubilization test and indole acetic acid production test. Out of the 57 isolates, six bacterial isolates had antagonistic activities against Fusarium oxysporum, while seven bacterial isolates antagonized Ralstonia solanacearum. Conclusion The result showed that termite mound soil contains some useful bacteria that are capable of solubilizing phosphate and potassium and producing indole acetic acid which are the plant growth-promoting potentials and as well suppressing plant soil pathogen.

Author(s):  
Caroline F. Ajilogba ◽  
Olubukola O. Babalola ◽  
Patrick Adebola ◽  
Rasheed Adeleke

AbstractBambara groundnut, an underutilized crop has been proved to be an indigenous crop in Africa with the potential for food security. The rhizosphere of Bambara groundnut like other legumes contains several important bacteria that have not been explored for their plant growth-promoting properties. The aim of this research was to determine the potentials of rhizobacteria from Bambara groundnut soil samples as either biofertilizer or biocontrol agents or both to help provide sustainable agriculture in Africa and globally. Analyses of Bambara groundnut rhizospheric soil samples included chemical analysis such as nitrogen content analysis using extractable inorganic nitrogen method as well as cation exchangeable capacity using ammonium acetate method. Plant growth-promoting properties of isolated rhizobacteria tested include indole acetic acid, hydrogen cyanide, phosphate solubilization, 1-aminocyclopropane-1-carboxylate and ammonia production activities using standard methods. In addition, antifungal assay dual culture method was used to analyze the biocontrol properties of the isolates. Phylogenetic analysis using 16S rRNA was also carried out on the isolates. Isolated rhizobacteria from bambara groundnut rhizosphere were cultured. All the isolates were able to produce ammonia and 1-aminocyclopropane-1-carboxylate while 4.65%, 12.28% and 27.91% produced Hydrogen cyanide, Indole acetic acid and solubilized phosphate respectively, making them important targets as biocontrol and biofertilizer agents. The growth of Fusarium graminearum was suppressed in vitro by 6.98% of the isolates. Plant growth promoting activities of rhizobacteria from bambara groundnut rhizosphere reveals that it has great potentials in food security as biofertilizer and biocontrol agent against fungal and bacterial pathogens.


2019 ◽  
Vol 11 (2) ◽  
pp. 346-351
Author(s):  
Deepika Chhabra ◽  
Poonam Sharma

Bacteria that colonize plant tissues other than rhizobia and are beneficial for plant growth referred to non rhizobial plant growth-promoting endophytic bacteria (PGPEB). This study was designed to assay the biocontrol activity of plant growth promoting endophytic bacterial isolates those found positive for P. solubilization, ACC deaminase, Indole acetic acid and Gibberelic acid production. These bacterial isolates were obtained from chickpea (Cicer arietinum L.) tissues (roots and nodules).  In a previous study a total of 263 non rhizobial endophytic bacterial isolates were isolated. Out of 263 isolates, 64.5% and 34.5% were Gram positive and negative, respectively. Further for biochemical characterization, catalase, oxidase, citrate utilization, nitrate reduction, methyl red and Voges Proskauer’s tests, were performed. On the basis of P solubilization, ACC deaminase, Indole acetic acid and Gibberelic acid production 75 potential isolates were selected and screened for their biocontrol activity viz. (production of cell wall degrading enzymes, production of HCN and fluorescent pigment). Out of 75 isolates, only 29 isolates produced cellulase, 64 isolates were able to produce protease and 28 were positive for both cellulose and protease. Of 75 endophytic isolates 12 isolates (7 from root tissue and 5 from nodules tissue, respectively) were positive for HCN production and 16 isolates were found to be fluorescent pigment producer under µv ligh. As chemical fertilizers and pesticides have detrimental effects on the environment. So these bacterial endophytic isolates will be used not only as a biofertilizer because of their plant growth promotional activities but also used as an alternative of synthetic chemicals for control of several plant diseases.


2016 ◽  
Vol 3 (1) ◽  
pp. 105-113 ◽  
Author(s):  
Mohammad Mosharraf Hossain ◽  
Keshob Chandra Das ◽  
Sabina Yesmin ◽  
Syfullah Shahriar

Plant growth promoting rhizobacteria (PGPR) are beneficial bacteria that colonize plant roots and enhance plant growth by a wide variety of mechanisms. Ten isolates of bacteria designated as SS01, SS02, SS03, SS04, SS05, SS06, SS07, SS08, SS09 and SS10 were successfully isolated and morphologically and biochemically characterized. Subsequently to investigate the effect of PGPR isolates on the growth of chickpea, a pot culture experiment was conducted in 2013 at National Institute Biotechnology, Bangladesh net house. Prior to seeds grown in plastic pots, seeds were treated with PGPR isolates and seedlings were harvested after 21 days of inoculation. All the isolates were gram negative in reaction, catalase positive, produced indole acetic acid (IAA) as well as performed phosphate solubilization, able to degrade cellulose and have the adaptability in wide range of temperature and showed positive growth pattern in medium. Most of isolates resulted in a significant increasing of shoot length, root length and dry matter production of shoot and root of chickpea seedlings. Application of PGPR isolates significantly improves the percentage of seed germination under saline conditions. The present study, therefore suggested that the use of PGPR isolates SS04, SS10 and SS08 as inoculants biofertilizers might be beneficial for chickpea cultivation in saline conditionRes. Agric., Livest. Fish.3(1): 105-113, April 2016


2021 ◽  
Vol 10 (3) ◽  
pp. 246-254
Author(s):  
Dang Thi Ngoc Thanh ◽  
Pham Thi Thu Ly ◽  
Pham Thi Nga ◽  
Pham Van Ngot

The roots of two legume species (Tephrosia purpurea and Tephrosia villosa) that grew wild on dry sandy soils of Binh Thuan province were sources for isolating plant growth-promoting endophytic bacteria. Semi-solid LGI medium was used for the isolation of nitrogen-fixing bacteria from root extracts. All bacterial isolates isolates were evaluated for their ability to solubilize calcium orthophosphate on solid NBRIP medium and their ability to produce IAA in Burk's liquid medium supplemented with 100 mg/L tryptophan. The possibilities of nitrogen fixation, phosphate solubilization and IAA synthesis were all quantitative examined by colorimetric method. Twenty-two bacterial isolates of T. purpurea and 18 isolates of T. villosa were capable of nitrogen fixation in the range of 1.94 to 2.81 mg/L NH4+, whereas only 18 isolates of T. purpurea and 16 isolates of T. villosa showed phosphate solubilization in the range of 12.30 – 48.90 mg/L P2O5, and IAA production in the range of 0.38 – 12.72 mg/L. Sixteen outstanding bacterial isolates of the two legume species were identified by MALDI-TOF technique. The results showed that 13 isolates had high similarity with five bacterial genera including Klebsiella, Cronobacter, Enterobacter, Burkholderia, and Bacillus with score values in the range of 2.070 – 2.411.


2013 ◽  
Vol 807-809 ◽  
pp. 2023-2026
Author(s):  
Yu Xiu Zhang ◽  
Pei Li Shi ◽  
Qian Zhang

The cadmium-resistant Pseudomonas aeruginosa strain ZGKD2 was isolated from gangue pile of coal area. Production of siderophores, indole-3-acetic acid (IAA) and the solubilization of phosphate were observed in the strain. Two types of siderophores were identified by UV spectrophotometer. The highest production of IAA and phosphate solubilization were 2.0 ug/mL and 7.2 ug/mL. The root length, plant height and fresh weight of Amorpha fruticosa L in the substrates of Coal gannue and losses were promoted after inoculation with ZGKD2. These data indicated that Pseudomonas aeruginosa strain ZGKD2 was a plant growth-promoting bacterial (PGPB).


Sign in / Sign up

Export Citation Format

Share Document