scholarly journals 3-D depth migration via McClellan transformations

Geophysics ◽  
1991 ◽  
Vol 56 (11) ◽  
pp. 1778-1785 ◽  
Author(s):  
Dave Hale

Three‐dimensional seismic wavefields may be extrapolated in depth, one frequency at a time, by two‐dimensional convolution with a circularly symmetric, frequency‐ and velocity‐dependent filter. This depth extrapolation, performed for each frequency independently, lies at the heart of 3-D finite‐difference depth migration. The computational efficiency of 3-D depth migration depends directly on the efficiency of this depth extrapolation. McClellan transformations provide an efficient method for both designing and implementing two‐dimensional digital filters that have a particular form of symmetry, such as the circularly symmetric depth extrapolation filters used in 3-D depth migration. Given the coefficients of one‐dimensional, frequency‐ and velocity‐dependent filters used to accomplish 2-D depth migration, McClellan transformations lead to a simple and efficient algorithm for 3-D depth migration. 3-D depth migration via McClellan transformations is simple because the coefficients of two‐dimensional depth extrapolation filters are never explicitly computed or stored; only the coefficients of the corresponding one‐dimensional filter are required. The algorithm is computationally efficient because the cost of applying the two‐dimensional extrapolation filter via McClellan transformations increases only linearly with the number of coefficients N in the corresponding one‐dimensional filter. This efficiency is not intuitively obvious, because the cost of convolution with a two‐dimensional filter is generally proportional to [Formula: see text]. Computational efficiency is particularly important for 3-D depth migration, for which long extrapolation filters (large N) may be required for accurate imaging of steep reflectors.

2002 ◽  
Vol 12 (4) ◽  
pp. 1044-1052 ◽  
Author(s):  
Amitava Choudhury ◽  
S. Neeraj ◽  
Srinivasan Natarajan ◽  
C. N. R. Rao

2008 ◽  
Vol 62 (1) ◽  
Author(s):  
Peter C. Chu

The Navy’s mine impact burial prediction model creates a time history of a cylindrical or a noncylindrical mine as it falls through air, water, and sediment. The output of the model is the predicted mine trajectory in air and water columns, burial depth/orientation in sediment, as well as height, area, and volume protruding. Model inputs consist of parameters of environment, mine characteristics, and initial release. This paper reviews near three decades’ effort on model development from one to three dimensions: (1) one-dimensional models predict the vertical position of the mine’s center of mass (COM) with the assumption of constant falling angle, (2) two-dimensional models predict the COM position in the (x,z) plane and the rotation around the y-axis, and (3) three-dimensional models predict the COM position in the (x,y,z) space and the rotation around the x-, y-, and z-axes. These models are verified using the data collected from mine impact burial experiments. The one-dimensional model only solves one momentum equation (in the z-direction). It cannot predict the mine trajectory and burial depth well. The two-dimensional model restricts the mine motion in the (x,z) plane (which requires motionless for the environmental fluids) and uses incorrect drag coefficients and inaccurate sediment dynamics. The prediction errors are large in the mine trajectory and burial depth prediction (six to ten times larger than the observed depth in sand bottom of the Monterey Bay). The three-dimensional model predicts the trajectory and burial depth relatively well for cylindrical, near-cylindrical mines, and operational mines such as Manta and Rockan mines.


1976 ◽  
Vol 54 (14) ◽  
pp. 1454-1460 ◽  
Author(s):  
T. Tiedje ◽  
R. R. Haering

The theory of ultrasonic attenuation in metals is extended so that it applies to quasi one and two dimensional electronic systems. It is shown that the attenuation in such systems differs significantly from the well-known results for three dimensional systems. The difference is particularly marked for one dimensional systems, for which the attenuation is shown to be strongly temperature dependent.


1995 ◽  
Vol 291 ◽  
pp. 369-392 ◽  
Author(s):  
Ronald D. Joslin

The spatial evolution of three-dimensional disturbances in an attachment-line boundary layer is computed by direct numerical simulation of the unsteady, incompressible Navier–Stokes equations. Disturbances are introduced into the boundary layer by harmonic sources that involve unsteady suction and blowing through the wall. Various harmonic-source generators are implemented on or near the attachment line, and the disturbance evolutions are compared. Previous two-dimensional simulation results and nonparallel theory are compared with the present results. The three-dimensional simulation results for disturbances with quasi-two-dimensional features indicate growth rates of only a few percent larger than pure two-dimensional results; however, the results are close enough to enable the use of the more computationally efficient, two-dimensional approach. However, true three-dimensional disturbances are more likely in practice and are more stable than two-dimensional disturbances. Disturbances generated off (but near) the attachment line spread both away from and toward the attachment line as they evolve. The evolution pattern is comparable to wave packets in flat-plate boundary-layer flows. Suction stabilizes the quasi-two-dimensional attachment-line instabilities, and blowing destabilizes these instabilities; these results qualitatively agree with the theory. Furthermore, suction stabilizes the disturbances that develop off the attachment line. Clearly, disturbances that are generated near the attachment line can supply energy to attachment-line instabilities, but suction can be used to stabilize these instabilities.


2015 ◽  
Vol 06 (01) ◽  
pp. 1450001 ◽  
Author(s):  
Ratikanta Behera ◽  
Mani Mehra

In this paper, we present a dynamically adaptive wavelet method for solving Schrodinger equation on one-dimensional, two-dimensional and on the sphere. Solving one-dimensional and two-dimensional Schrodinger equations are based on Daubechies wavelet with finite difference method on an arbitrary grid, and for spherical Schrodinger equation is based on spherical wavelet over an optimal spherical geodesic grid. The method is applied to the solution of Schrodinger equation for computational efficiency and achieve accuracy with controlling spatial grid adaptation — high resolution computations are performed only in regions where a solution varies greatly (i.e., near steep gradients, or near-singularities) and a much coarser grid where the solution varies slowly. Thereupon the dynamic adaptive wavelet method is useful to analyze local structure of solution with very less number of computational cost than any other methods. The prowess and computational efficiency of the adaptive wavelet method is demonstrated for the solution of Schrodinger equation on one-dimensional, two-dimensional and on the sphere.


Author(s):  
V. Vlasenko ◽  
A. Shiryaeva

New quasi-two-dimensional (2.5D) approach to description of three-dimensional (3D) flows in ducts is proposed. It generalizes quasi-one-dimensional (quasi-1D, 1.5D) theories. Calculations are performed in the (x; y) plane, but variable width of duct in the z direction is taken into account. Derivation of 2.5D approximation equations is given. Tests for verification of 2.5D calculations are proposed. Parametrical 2.5D calculations of flow with hydrogen combustion in an elliptical combustor of a high-speed aircraft, investigated within HEXAFLY-INT international project, are described. Optimal scheme of fuel injection is found and explained. For one regime, 2.5D and 3D calculations are compared. The new approach is recommended for use during preliminary design of combustion chambers.


1997 ◽  
Vol 490 ◽  
Author(s):  
Misha Temkin ◽  
Ivan Chakarov

ABSTRACTA computationally efficient method for ion implantation simulation is presented. The method allows two-dimensional ion implantation profiles in arbitrary shaped structures to be calculated and is valid for both amorphous and crystalline materials. It uses an extension of the one-dimensional dual Pearson approximation into the second dimension.


Sign in / Sign up

Export Citation Format

Share Document