Multicomponent prestack depth migration by scalar wavefield extrapolation

Geophysics ◽  
2002 ◽  
Vol 67 (6) ◽  
pp. 1886-1894 ◽  
Author(s):  
Anning Hou ◽  
Kurt J. Marfurt

We present a new multicomponent prestack depth migration methodology based on successive application of conventional scalar wave equation migration. We do not separate the data into PP‐ and PS‐waves; rather, we migrate each x‐, y‐, and z‐component of the data using both P and S propagation velocities, followed by polarization filtering in the depth domain. By generating intermediate images in the depth domain, we can account for polarity reversals of the PS reflection for all dips. Since the polarization angles are calculated from the data, it is straightforward to accommodate anisotropic effects (quasi‐P and quasi‐S) into multicomponent migration. The multicomponent migration results in our synthetic examples demonstrate that even for a single shot gather, we can obtain clean PP‐ and PS‐wave images over complex structures and resolve the problem of PS‐wave polarity reversals.

Geophysics ◽  
2001 ◽  
Vol 66 (1) ◽  
pp. 246-255 ◽  
Author(s):  
Oong K. Youn ◽  
Hua‐wei Zhou

Depth imaging with multiples is a prestack depth migration method that uses multiples as the signal for more accurate boundary mapping and amplitude recovery. The idea is partially related to model‐based multiple‐suppression techniques and reverse‐time depth migration. Conventional reverse‐time migration uses the two‐way wave equation for the backward wave propagation of recorded seismic traces and ray tracing or the eikonal equation for the forward traveltime computation (the excitation‐time imaging principle). Consequently, reverse‐time migration differs little from most other one‐way wave equation or ray‐tracing migration methods which expect only primary reflection events. Because it is almost impossible to attenuate multiples without degrading primaries, there has been a compelling need to devise a tool to use multiples constructively in data processing rather than attempting to destroy them. Furthermore, multiples and other nonreflecting wave types can enhance boundary imaging and amplitude recovery if a full two‐way wave equation is used for migration. The new approach solves the two‐way wave equation for both forward and backward directions of wave propagation using a finite‐difference technique. Thus, it handles all types of acoustic waves such as reflection (primary and multiples), refraction, diffraction, transmission, and any combination of these waves. During the imaging process, all these different types of wavefields collapse at the boundaries where they are generated or altered. The process goes through four main steps. First, a source function (wavelet) marches forward using the full two‐way scalar wave equation from a source location toward all directions. Second, the recorded traces in a shot gather march backward using the full two‐way scalar wave equation from all receiver points in the gather toward all directions. Third, the two forward‐ and backward‐propagated wavefields are correlated and summed for all time indices. And fourth, a Laplacian image reconstruction operator is applied to the correlated image frame. This technique can be applied to all types of seismic data: surface seismic, vertical seismic profile (VSP), crosswell seismic, vertical cable seismic, ocean‐bottom cable (OBC) seismic, etc. Because it migrates all wave types, the input data require no or minimal preprocessing (demultiple should not be done, but near‐surface or acquisition‐related problems might need to be corrected). Hence, it is only a one‐step process from the raw field gathers to a final depth image. External noise in the raw data will not correlate with the forward wavefield except for some coincidental matching; therefore, it is usually unnecessary to do signal enhancement processing before the depth imaging with multiples. The input velocity model could be acquired from various methods such as iterative focusing analysis or tomography, as in other prestack depth migration methods. The new method has been applied to data sets from a simple multiple‐generating model, the Marmousi model, and a real offset VSP. The results show accurate imaging of primaries and multiples with overall significant improvements over conventionally imaged sections.


Geophysics ◽  
2009 ◽  
Vol 74 (4) ◽  
pp. S67-S74 ◽  
Author(s):  
Jun Cao ◽  
Ru-Shan Wu

Wave-equation-based acquisition aperture correction in the local angle domain can improve image amplitude significantly in prestack depth migration. However, its original implementation is inefficient because the wavefield decomposition uses the local slant stack (LSS), which is demanding computationally. We propose a faster method to obtain the image and amplitude correction factor in the local angle domain using beamlet decomposition in the local wavenumber domain. For a given frequency, the image matrix in the local wavenumber domain for all shots can be calculated efficiently. We then transform the shot-summed image matrix from the local wavenumber domain to the local angle domain (LAD). The LAD amplitude correction factor can be obtained with a similar strategy. Having a calculated image and correction factor, one can apply similar acquisition aperture corrections to the original LSS-based method. For the new implementation, we compare the accuracy and efficiency of two beamlet decompositions: Gabor-Daubechies frame (GDF) and local exponential frame (LEF). With both decompositions, our method produces results similar to the original LSS-based method. However, our method can be more than twice as fast as LSS and cost only twice the computation time of traditional one-way wave-equation-based migrations. The results from GDF decomposition are superior to those from LEF decomposition in terms of artifacts, although GDF requires a little more computing time.


2003 ◽  
Vol 2003 (2) ◽  
pp. 1-4
Author(s):  
James Sun ◽  
Carl Notfors ◽  
Zhang Yu ◽  
Gray Sam ◽  
Young Jerry

Geophysics ◽  
2002 ◽  
Vol 67 (6) ◽  
pp. 1895-1902 ◽  
Author(s):  
Shengwen Jin ◽  
Charles C. Mosher ◽  
Ru‐Shan Wu

The double square root equation for laterally varying media in midpoint‐offset coordinates provides a convenient framework for developing efficient 3‐D prestack wave‐equation depth migrations with screen propagators. Offset‐domain pseudoscreen prestack depth migration downward continues the source and receiver wavefields simultaneously in midpoint‐offset coordinates. Wavefield extrapolation is performed with a wavenumber‐domain phase shift in a constant background medium followed by a phase correction in the space domain that accommodates smooth lateral velocity variations. An extra wide‐angle compensation term is also applied to enhance steep dips in the presence of strong velocity contrasts. The algorithm is implemented using fast Fourier transforms and tri‐diagonal matrix solvers, resulting in a computationally efficient implementation. Combined with the common‐azimuth approximation, 3‐D pseudoscreen migration provides a fast wavefield extrapolation for 3‐D marine streamer data. Migration of the 2‐D Marmousi model shows that offset domain pseudoscreen migration provides a significant improvement over first‐arrival Kirchhoff migration for steeply dipping events in strong contrast heterogeneous media. For the 3‐D SEG‐EAGE C3 Narrow Angle synthetic dataset, image quality from offset‐domain pseudoscreen migration is comparable to shot‐record finite‐difference migration results, but with computation times more than 100 times faster for full aperture imaging of the same data volume.


Geophysics ◽  
1999 ◽  
Vol 64 (5) ◽  
pp. 1535-1545 ◽  
Author(s):  
Lian‐Jie Huang ◽  
Michael C. Fehler ◽  
Peter M. Roberts ◽  
Charles C. Burch

We develop a novel depth‐migration method termed the extended local Rytov Fourier (ELRF) migration method. It is based on the scalar wave equation and a local application of the Rytov approximation within each extrapolation interval. Wavefields are Fourier transformed back and forth between the frequency‐space and frequency‐wavenumber domains during wavefield extrapolation. The lateral slowness variations are taken into account in the frequency‐space domain. The method is efficient due to the use of a fast Fourier transform algorithm. Under the small angle approximation, the ELRF method leads to the split‐step Fourier (SSF) method that is unconditionally stable. The ELRF method and the extended local Born Fourier (ELBF) method that we previously developed can handle wider propagation angles than the SSF method and account for the phase and amplitude changes due to the lateral variations of slowness, whereas the SSF method only accounts for the phase changes. The stability of the ELRF method is controlled more easily than that of the ELBF method.


2003 ◽  
Vol 46 (5) ◽  
pp. 966-977 ◽  
Author(s):  
Jiubing CHENG ◽  
Huazhong WANG ◽  
Zaitian MA

Sign in / Sign up

Export Citation Format

Share Document