The role of 3D earth models in seismic reflection methods applied to mineral exploration

2008 ◽  
Author(s):  
Gervais Perron ◽  
Calin Cosma
Author(s):  
James Marlatt

ABSTRACT Many people may not be aware of the extent of Kurt Kyser's collaboration with mineral exploration companies through applied research and the development of innovative exploration technologies, starting at the University of Saskatchewan and continuing through the Queen's Facility for Isotope Research. Applied collaborative, geoscientific, industry-academia research and development programs can yield technological innovations that can improve the mineral exploration discovery rates of economic mineral deposits. Alliances between exploration geoscientists and geoscientific researchers can benefit both parties, contributing to the pure and applied geoscientific knowledge base and the development of innovations in mineral exploration technology. Through a collaboration that spanned over three decades, we gained insight into the potential for economic uranium deposits around the world in Canada, Australia, USA, Finland, Russia, Gabon, Namibia, Botswana, South Africa, and Guyana. Kurt, his research team, postdoctoral fellows, and students developed technological innovations related to holistic basin analysis for economic mineral potential, isotopes in mineral exploration, and biogeochemical exploration, among others. In this paper, the business of mineral exploration is briefly described, and some examples of industry-academic collaboration innovations brought forward through Kurt's research are identified. Kurt was a masterful and capable knowledge broker, which is a key criterion for bringing new technologies to application—a grand, curious, credible, patient, and attentive communicator—whether talking about science, business, or life and with first ministers, senior technocrats, peers, board members, first nation peoples, exploration geologists, investors, students, citizens, or friends.


1993 ◽  
Vol 2 (2) ◽  
pp. 156-166 ◽  
Author(s):  
G. N. Jadhav ◽  
V. Panchapakesan ◽  
K. C. Sahu

Author(s):  
Cheikh Ahmadou Bamba Niang ◽  
David Baratoux ◽  
Dina Pathé Diallo ◽  
Pierre Rochette ◽  
Mark W. Jessell ◽  
...  

ABSTRACT Airborne radiometric (gamma-ray) data provide estimates of the concentrations of potassium (K), thorium (Th), and uranium (U) in soil, regolith, and bedrock. Radiometric data constitute an important source of geochemical information, commonly used in mineral exploration and for geological mapping of Earth and other planets. Airborne radiometric data have rarely been applied to the exploration and analyses of impact structures, in contrast with other conventional geophysical tools (e.g., gravimetry, magnetism, and seismic reflection/refraction). This work represents the first systematic survey of the K, Th, and U radiometric signatures of Australian impact structures, based on the continent-wide airborne radiometric coverage of Australia. We first formulated several hypotheses regarding the possible causes of formation of circular radiometric patterns associated with impact structures. Then, the radiometric signatures of 17 exposed impact structures in Australia were documented. Our observations confirmed the supposition that impact structures are commonly associated with circular radiometric patterns. We then selected the five structures with the most prominent circular radiometric patterns (Gosses Bluff, Lawn Hill, Acraman, Spider, and Shoemaker), and we discuss the possible origin of these anomalies. Based on these five case studies, we argue that such patterns result from either crustal deformation induced by the impact event and/or from postimpact superficial processes controlled by the crater topography. This work also suggests that airborne radiometric data may be useful, in combination with other geophysical tools, in the search for new possible impact structures.


Geophysics ◽  
2000 ◽  
Vol 65 (6) ◽  
pp. 1871-1881 ◽  
Author(s):  
Don White ◽  
David Boerner ◽  
Jianjun Wu ◽  
Steve Lucas ◽  
Eberhard Berrer ◽  
...  

Seismic reflection and electromagnetic (EM) data were acquired near Thompson, Manitoba, Canada, to map the subsurface extent of the Paleoproterozoic, nickel ore‐bearing Ospwagan Group. These data are supplemented by surface and borehole geology and by laboratory measurements of density, seismic velocity, and electrical conductivity, which indicate that Ospwagan Group rocks are generally more seismically reflective and electrically conductive than the Archean basement rocks that envelop them. The combined seismic/EM interpretation suggests that the Thompson Nappe (cored by Ospwagan Group rocks) lies blind beneath the Archean basement gneisses, to the east of the subvertical Burntwood lineament, in a series of late recumbent folds and/or southeast‐dipping reverse faults. The EM data require that the shallowest of these fold/fault structures occur within the basement gneisses or perhaps less conductive Ospwagan Group rocks. The results of this study demonstrate how seismic and deep sounding EM methods might be utilized as regional exploration tools in the Thompson nickel belt.


1988 ◽  
Vol 7 (2) ◽  
pp. 35-37
Author(s):  
Roy Woodall

1995 ◽  
Vol 32 (2) ◽  
pp. 167-176 ◽  
Author(s):  
Pierre Verpaelst ◽  
A. Shirley Péloquin ◽  
Erick Adam ◽  
Arthur E. Barnes ◽  
John N. Ludden ◽  
...  

The Abitibi–Grenville Lithoprobe project completed a regional (line 21) and a high-resolution (line 21-1) seismic survey in the Noranda Central Volcanic Complex of the Blake River Group, Abitibi, Quebec. Line 21 provides a regional framework in which the Archean crust is divided into three layers, two of which are discussed here: the uppermost layer, which corresponds to the Blake River Group, is the least reflective, and lies above 4 s (12 km), and the mid-crustal layer, which is composed of a complex pattern of generally east-northeast-dipping reflectors and lies between 4 and 8 s. Within the regional data, the Mine Series of the Central Volcanic Complex is imaged as a semitransparent series of reflectors overlying a highly reflective east-facing structure interpreted as the subvolcanic Flavrian pluton. The high-resolution data (line 21-1) were collected in the vicinity of the Ansil mine. The seismic images in this region can be controlled by surface geology and extensive drill-hole data, and the project was designed to test the applicability of seismic reflection profiling in providing structural and stratigraphic information for use in mineral exploration: shallow-dipping reflectors correlate well with lithological variations or contacts in the volcanic sequence; strong subhorizontal reflectors correspond to diorite and gabbro dykes and sills; several abrupt lateral changes in the reflectivity coincide with known intrusive contacts such as the Lac Dufault pluton.


Geophysics ◽  
2017 ◽  
Vol 82 (1) ◽  
pp. A 1-A 5 ◽  
Author(s):  
Kees Wapenaar ◽  
Joost van der Neut ◽  
Evert Slob

Marchenko imaging can produce seismic reflection images in which artifacts related to multiples are suppressed. However, in state-of-the-art implementations, multiples do not contribute to the imaged reflectors. With an “event-by-event” deconvolution imaging approach, it is possible to use multiples in Marchenko imaging. We illustrate this for a 1D reflection response in which the primary reflection of a specific interface is missing.


Sign in / Sign up

Export Citation Format

Share Document