scholarly journals Estimating snow water equivalent over long mountain transects using snowmobile-mounted ground-penetrating radar

Geophysics ◽  
2016 ◽  
Vol 81 (1) ◽  
pp. WA183-WA193 ◽  
Author(s):  
W. Steven Holbrook ◽  
Scott N. Miller ◽  
Matthew A. Provart

The water balance in alpine watersheds is dominated by snowmelt, which provides infiltration, recharges aquifers, controls peak runoff, and is responsible for most of the annual water flow downstream. Accurate estimation of snow water equivalent (SWE) is necessary for runoff and flood estimation, but acquiring enough measurements is challenging due to the variability of snow accumulation, ablation, and redistribution at a range of scales in mountainous terrain. We have developed a method for imaging snow stratigraphy and estimating SWE over large distances from a ground-penetrating radar (GPR) system mounted on a snowmobile. We mounted commercial GPR systems (500 and 800 MHz) to the front of the snowmobile to provide maximum mobility and ensure that measurements were taken on pristine snow. Images showed detailed snow stratigraphy down to the ground surface over snow depths up to at least 8 m, enabling the elucidation of snow accumulation and redistribution processes. We estimated snow density (and thus SWE, assuming no liquid water) by measuring radar velocity of the snowpack through migration focusing analysis. Results from the Medicine Bow Mountains of southeast Wyoming showed that estimates of snow density from GPR ([Formula: see text]) were in good agreement with those from coincident snow cores ([Formula: see text]). Using this method, snow thickness, snow density, and SWE can be measured over large areas solely from rapidly acquired common-offset GPR profiles, without the need for common-midpoint acquisition or snow cores.

2020 ◽  
pp. 1-10
Author(s):  
Tate G. Meehan ◽  
H. P. Marshall ◽  
John H. Bradford ◽  
Robert L. Hawley ◽  
Thomas B. Overly ◽  
...  

Abstract We present continuous estimates of snow and firn density, layer depth and accumulation from a multi-channel, multi-offset, ground-penetrating radar traverse. Our method uses the electromagnetic velocity, estimated from waveform travel-times measured at common-midpoints between sources and receivers. Previously, common-midpoint radar experiments on ice sheets have been limited to point observations. We completed radar velocity analysis in the upper ~2 m to estimate the surface and average snow density of the Greenland Ice Sheet. We parameterized the Herron and Langway (1980) firn density and age model using the radar-derived snow density, radar-derived surface mass balance (2015–2017) and reanalysis-derived temperature data. We applied structure-oriented filtering to the radar image along constant age horizons and increased the depth at which horizons could be reliably interpreted. We reconstructed the historical instantaneous surface mass balance, which we averaged into annual and multidecadal products along a 78 km traverse for the period 1984–2017. We found good agreement between our physically constrained parameterization and a firn core collected from the dry snow accumulation zone, and gained insights into the spatial correlation of surface snow density.


2012 ◽  
Vol 44 (4) ◽  
pp. 600-613 ◽  
Author(s):  
Nils Sundström ◽  
David Gustafsson ◽  
Andrey Kruglyak ◽  
Angela Lundberg

Estimates of snow water equivalent (SWE) with ground-penetrating radar can be used to calibrate and validate measurements of SWE over large areas conducted from satellites and aircrafts. However, such radar estimates typically suffer from low accuracy in wet snowpacks due to a built-in assumption of dry snow. To remedy the problem, we suggest determining liquid water content from path-dependent attenuation. We present the results of a field evaluation of this method which demonstrate that, in a wet snowpack between 0.9 and 3 m deep and with about 5 vol% of liquid water, liquid water content is underestimated by about 50% (on average). Nevertheless, the method decreases the mean error in SWE estimates to 16% compared to 34% when the presence of liquid water in snow is ignored and 31% when SWE is determined directly from two-way travel time and calibrated for manually measured snow density.


Biologia ◽  
2014 ◽  
Vol 69 (11) ◽  
Author(s):  
Martin Bartík ◽  
Roman Sitko ◽  
Marek Oreňák ◽  
Juraj Slovik ◽  
Jaroslav Škvarenina

AbstractIn the presented paper we deal with the impact of the mature spruce stand on the accumulation and melting of snow cover at Červenec research area located in the Western Tatras at an elevation of 1420 m a.s.l. The work analyses the data obtained from the monitoring of snow cover during the period 2009–2014 (6 seasons). Since the season 2012/2013 the measurements have been also performed in a dead part of the stand and in a meadow. The results proved significant impact of the spruce stand on hydro-physical characteristics of snow cover — snow water equivalent, snow density, as well as on their change due to the dieback of the stand. The data measured at individual locations (open space in the forest, open meadow area, living and dead forest) were tested with the paired t-test for the significance of average differences. Average snow water equivalent in the living forest, dead forest and meadow was 42%, 47% and 83% of the reference value measured at the open space in the forest, respectively. The process of snow accumulation and melting was fastest at the open space, followed by the dead forest. In the living forest, the processes were the slowest.


2017 ◽  
Author(s):  
Nena Griessinger ◽  
Franziska Mohr ◽  
Tobias Jonas

Abstract. Ground penetrating radar (GPR) has become a promising technique in the field of snow hydrological research. It is commonly used to measure snow depth, density, and water equivalent over large distances or along gridded snow courses. Having built and tested a mobile light-weight setup, we demonstrate that GPR is capable of accurately measuring snow ablation rates in complex alpine terrain. Our setup was optimized for efficient measurements and consisted of a common-mid-point assembly with four pairs of antennas mounted to a plastic sled, which was small enough to permit safe and convenient operations. Repeated measurements were taken during the 2014/15 winter season along ten profiles within two valleys located in the eastern Swiss Alps. Resulting GPR-based data of snow depth and water equivalent as well as their respective change rates over time were in good agreement with concurrent manual measurements, in particular if accurate alignment between repeated overpasses could be achieved (root-mean-square error of 4.5 cm for snow depth, 25 mm for snow water equivalent, and 4.4 cm and 26 mm for the respective change rates). With its suitability for alpine terrain and the achieved accuracy, the presented setup could become a valuable tool to validate snowmelt models or to complement lidar-based snow surveys.


2013 ◽  
Vol 59 (217) ◽  
pp. 874-882 ◽  
Author(s):  
Tyler Sylvestre ◽  
Luke Copland ◽  
Michael N. Demuth ◽  
Martin Sharp

AbstractGround-penetrating radar (GPR) surveys at a center frequency of 500 MHz were used to determine winter (2007/08) and net annual (2005–07) snow water equivalent (SWE) patterns across the upper parts of Belcher Glacier, Devon Ice Cap, Nunavut, Canada. The GPR measurements were validated against snow depths determined from avalanche probe measurements, and converted to SWE values using densities measured with a down-borehole neutron density probe and in shallow snow pits. Distinct internal reflection horizons (IRHs) in the GPR record were formed during warm summers in 2007 and 2005, and a large rain event in summer 2006 which caused ice to accumulate above the 2005 melt surface. Elevation provides the dominant control on winter SWE distribution across the basin, with surface topography (e.g. gullies) also being locally important. Based on the location where IRHs intersected the ice-cap surface, the basin-wide firn line occurred at an altitude of 1260–1300 m over the period 2005–08. Net mass balance across the accumulation area of Belcher Glacier averaged 0.24 m w.e. a−1 over the period 2005–07, mainly dependent on altitude. This is a little higher than most previous estimates for the period since the 1960s, although the differences lie within error limits.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 363
Author(s):  
George Duffy ◽  
Fraser King ◽  
Ralf Bennartz ◽  
Christopher G. Fletcher

CloudSat is often the only measurement of snowfall rate available at high latitudes, making it a valuable tool for understanding snow climatology. The capability of CloudSat to provide information on seasonal and subseasonal time scales, however, has yet to be explored. In this study, we use subsampled reanalysis estimates to predict the uncertainties of CloudSat snow water equivalent (SWE) accumulation measurements at various space and time resolutions. An idealized/simulated subsampling model predicts that CloudSat may provide seasonal SWE estimates with median percent errors below 50% at spatial scales as small as 2° × 2°. By converting these predictions to percent differences, we can evaluate CloudSat snowfall accumulations against a blend of gridded SWE measurements during frozen time periods. Our predictions are in good agreement with results. The 25th, 50th, and 75th percentiles of the percent differences between the two measurements all match predicted values within eight percentage points. We interpret these results to suggest that CloudSat snowfall estimates are in sufficient agreement with other, thoroughly vetted, gridded SWE products. This implies that CloudSat may provide useful estimates of snow accumulation over remote regions within seasonal time scales.


2021 ◽  
Author(s):  
Ilaria Clemenzi ◽  
David Gustafsson ◽  
Jie Zhang ◽  
Björn Norell ◽  
Wolf Marchand ◽  
...  

<p>Snow in the mountains is the result of the interplay between meteorological conditions, e.g., precipitation, wind and solar radiation, and landscape features, e.g., vegetation and topography. For this reason, it is highly variable in time and space. It represents an important water storage for several sectors of the society including tourism, ecology and hydropower. The estimation of the amount of snow stored in winter and available in the form of snowmelt runoff can be strategic for their sustainability. In the hydropower sector, for example, the occurrence of higher snow and snowmelt runoff volumes at the end of the spring and in the early summer compared to the estimated one can substantially impact reservoir regulation with energy and economical losses. An accurate estimation of the snow volumes and their spatial and temporal distribution is thus essential for spring flood runoff prediction. Despite the increasing effort in the development of new acquisition techniques, the availability of extensive and representative snow and density measurements for snow water equivalent estimations is still limited. Hydrological models in combination with data assimilation of ground or remote sensing observations is a way to overcome these limitations. However, the impact of using different types of snow observations on snowmelt runoff predictions is, little understood. In this study we investigated the potential of assimilating in situ and remote sensing snow observations to improve snow water equivalent estimates and snowmelt runoff predictions. We modelled the seasonal snow water equivalent distribution in the Lake Överuman catchment, Northern Sweden, which is used for hydropower production. Simulations were performed using the semi-distributed hydrological model HYPE for the snow seasons 2017-2020. For this purpose, a snowfall distribution model based on wind-shelter factors was included to represent snow spatial distribution within model units. The units consist of 2.5x2.5 km<sup>2</sup> grid cells, which were further divided into hydrological response units based on elevation, vegetation and aspect. The impact on the estimation of the total catchment mean snow water equivalent and snowmelt runoff volume were evaluated using for data assimilation, gpr-based snow water equivalent data acquired along survey lines in the catchment in the early spring of the four years, snow water equivalent data obtained by a machine learning algorithm and satellite-based fractional snow cover data. Results show that the wind-shelter based snow distribution model was able to represent a similar spatial distribution as the gpr survey lines, when assessed on the catchment level. Deviations in the model performance within and between specific gpr survey lines indicate issues with the spatial distribution of input precipitation, and/or need to include explicit representation of snow drift between model units. The explicit snow distribution model also improved runoff simulations, and the ability of the model to improve forecast through data assimilation.</p>


Sign in / Sign up

Export Citation Format

Share Document