P-wave velocity estimation from well log data through least-squares inversion using Bayesian regularization

2017 ◽  
Author(s):  
Odette C. A. de Aragão ◽  
Amin Bassrei
Geophysics ◽  
2013 ◽  
Vol 78 (3) ◽  
pp. D129-D134 ◽  
Author(s):  
Samik Sil

We evaluated a method of deriving seismic fracture parameters from vertical-well-log data with the assumption that the fractured medium is transversely isotropic with a horizontal axis of symmetry (HTI). One approximation we used is that the observed vertical P-wave velocity is the same as the background isotropic P-wave velocity of the HTI medium. Another assumption was that the fractures and cracks are noninteractive and penny shaped. Using these approximations, we generated the fracture compliance matrix for each layer. Fracture parameters were then derived by constructing the HTI stiffness matrix for those layers. We tested our method using vertical-well-log data from a tight sand reservoir in Colorado, USA. “Thomsen-style” parameters were derived, and gas-filled fractures were identified on this log. The identified gas-filled fractures were compared to the production log data. The fracture density was also obtained at the well location within the depth of interest. We also found some problems and limitations caused by approximating vertical P-wave velocity the same as the background isotropic P-wave velocity.


Geophysics ◽  
1996 ◽  
Vol 61 (5) ◽  
pp. 1245-1246

Okoye et al. develop a least-squares iterative inversion technique determining of the elastic parameters δ* and vertical P-wave velocity (α0) of any transversely isotropic modeling material in the laboratory. The anisotropic inverse modeling technique finds the best fitting solution and implements analytical rather than numerical differentiations to optimize the accuracy of the results.


Geophysics ◽  
2012 ◽  
Vol 77 (3) ◽  
pp. B125-B134 ◽  
Author(s):  
Xiujuan Wang ◽  
Myung Lee ◽  
Shiguo Wu ◽  
Shengxiong Yang

Wireline logs were acquired in eight wells during China’s first gas hydrate drilling expedition (GMGS-1) in April–June of 2007. Well logs obtained from site SH3 indicated gas hydrate was present in the depth range of 195–206 m below seafloor with a maximum pore-space gas hydrate saturation, calculated from pore water freshening, of about 26%. Assuming gas hydrate is uniformly distributed in the sediments, resistivity calculations using Archie’s equation yielded hydrate-saturation trends similar to those from chloride concentrations. However, the measured compressional (P-wave) velocities decreased sharply at the depth between 194 and 199 mbsf, dropping as low as [Formula: see text], indicating the presence of free gas in the pore space, possibly caused by the dissociation of gas hydrate during drilling. Because surface seismic data acquired prior to drilling were not influenced by the in situ gas hydrate dissociation, surface seismic data could be used to identify the cause of the low P-wave velocity observed in the well log. To determine whether the low well-log P-wave velocity was caused by in situ free gas or by gas hydrate dissociation, synthetic seismograms were generated using the measured well-log P-wave velocity along with velocities calculated assuming both gas hydrate and free gas in the pore space. Comparing the surface seismic data with various synthetic seismograms suggested that low P-wave velocities were likely caused by the dissociation of in situ gas hydrate during drilling.


2020 ◽  
Vol 9 (2) ◽  
pp. 83-89
Author(s):  
Muhammad Burhannudinnur ◽  
Suryo Prakoso

Several researchers have arranged an approach to estimating the P-wave velocity, but none of them specifically relates to the pore attribute. Pore attributes are one of the main factors that affect pore complexity and rock quality. If P-wave velocity is influenced by the pore complexity, then it should be possible to arrange a simple relationship of P-wave velocity with the pore attribute. This study is intended to construct an empirical relationship of P-wave velocity with a combination of pore attributes, shape factor, and tortuosity (Fsτ) so that the P-wave velocity can be easily estimated. This study used two sandstone datasets from 2 different basins, which are the northern part of the West Java basin and the Kutai basin. This research shows that a simple empirical equation can be arranged to relate the P-wave velocity with Fsτ. This relationship provides a good correlation coefficient. It offers an easy and straightforward approach to estimating P-wave


2020 ◽  
Vol 173 ◽  
pp. 103932
Author(s):  
Bo Yu ◽  
Hui Zhou ◽  
Handong Huang ◽  
Hanming Chen ◽  
Lingqian Wang ◽  
...  

2020 ◽  
Author(s):  
Suryo Prakoso ◽  
Muhammad Burhannudinnur ◽  
Sigit Rahmawan ◽  
Ghanima Yasmaniar ◽  
Syamsul Irham

Sign in / Sign up

Export Citation Format

Share Document