Improved resolution of ground penetrating radar full-waveform inversion by using cone penetration test data: A synthetic study

Author(s):  
Zhen Zhou ◽  
Anja Klotzsche ◽  
Nils Güting ◽  
Peleg Haruzi ◽  
Harry Vereecken ◽  
...  
Geophysics ◽  
2021 ◽  
pp. 1-74
Author(s):  
Zhen Zhou ◽  
Anja Klotzsche ◽  
Jessica Schmäck ◽  
Harry Vereecken ◽  
Jan van der Kruk

Detailed characterization of aquifers is critical and challenging due to the existence of heterogeneous small-scale high-contrast layers. For an improved characterization of subsurface hydrological characteristics, crosshole ground penetrating radar (GPR) and Cone Penetration Test (CPT) measurements are performed. In comparison to the CPT approach that can only provide 1D high resolution data along vertical profiles, crosshole GPR enables measuring 2D cross-sections between two boreholes. Generally, a standard inversion method for GPR data is the ray-based approach that considers only a small amount of information and can therefore only provide limited resolution. In the last decade, full-waveform inversion (FWI) of crosshole GPR data in time domain has matured, and provides inversion results with higher resolution by exploiting the full recorded waveform information. However, the FWI results are limited due to complex underground structures and the non-linear nature of the method. A new approach that uses CPT data in the inversion process is applied to enhance the resolution of the final relative permittivity FWI results by updating the effective source wavelet. The updated effective source wavelet possesses a priori CPT information and a larger bandwidth. Using the same starting models, a synthetic model comparison between the conventional and updated FWI results demonstrates that the updated FWI method provides reliable and more consistent structures. To test the method, five experimental GPR cross-section results are analyzed with the standard FWI and the new proposed updated approach. Both synthetic and experimental results indicate the potential of improving the reconstruction of subsurface aquifer structures by combining conventional 2D FWI results and 1D CPT data.


2015 ◽  
Vol 26 (6) ◽  
pp. 844-850 ◽  
Author(s):  
Jan van der Kruk ◽  
Nils Gueting ◽  
Anja Klotzsche ◽  
Guowei He ◽  
Sebastian Rudolph ◽  
...  

2010 ◽  
Vol 8 (6) ◽  
pp. 635-649 ◽  
Author(s):  
Anja Klotzsche ◽  
Jan van der Kruk ◽  
Giovanni Angelo Meles ◽  
Joseph Doetsch ◽  
Hansruedi Maurer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document