Consensus Clustering of Gene Expression Data and its Application to Gene Function Prediction

2007 ◽  
Vol 16 (3) ◽  
pp. 733-751 ◽  
Author(s):  
Guanghua Xiao ◽  
Wei Pan
2012 ◽  
Vol 10 (05) ◽  
pp. 1250011
Author(s):  
NATALIA NOVOSELOVA ◽  
IGOR TOM

Many external and internal validity measures have been proposed in order to estimate the number of clusters in gene expression data but as a rule they do not consider the analysis of the stability of the groupings produced by a clustering algorithm. Based on the approach assessing the predictive power or stability of a partitioning, we propose the new measure of cluster validation and the selection procedure to determine the suitable number of clusters. The validity measure is based on the estimation of the "clearness" of the consensus matrix, which is the result of a resampling clustering scheme or consensus clustering. According to the proposed selection procedure the stable clustering result is determined with the reference to the validity measure for the null hypothesis encoding for the absence of clusters. The final number of clusters is selected by analyzing the distance between the validity plots for initial and permutated data sets. We applied the selection procedure to estimate the clustering results on several datasets. As a result the proposed procedure produced an accurate and robust estimate of the number of clusters, which are in agreement with the biological knowledge and gold standards of cluster quality.


2019 ◽  
Vol 21 (5) ◽  
pp. 1818-1824 ◽  
Author(s):  
Qi Zhao ◽  
Yu Sun ◽  
Zekun Liu ◽  
Hongwan Zhang ◽  
Xingyang Li ◽  
...  

Abstract   Unsupervised clustering of high-throughput gene expression data is widely adopted for cancer subtyping. However, cancer subtypes derived from a single dataset are usually not applicable across multiple datasets from different platforms. Merging different datasets is necessary to determine accurate and applicable cancer subtypes but is still embarrassing due to the batch effect. CrossICC is an R package designed for the unsupervised clustering of gene expression data from multiple datasets/platforms without the requirement of batch effect adjustment. CrossICC utilizes an iterative strategy to derive the optimal gene signature and cluster numbers from a consensus similarity matrix generated by consensus clustering. This package also provides abundant functions to visualize the identified subtypes and evaluate subtyping performance. We expected that CrossICC could be used to discover the robust cancer subtypes with significant translational implications in personalized care for cancer patients. Availability and Implementation The package is implemented in R and available at GitHub (https://github.com/bioinformatist/CrossICC) and Bioconductor (http://bioconductor.org/packages/release/bioc/html/CrossICC.html) under the GPL v3 License.


2005 ◽  
Vol 03 (06) ◽  
pp. 1371-1389 ◽  
Author(s):  
GUANGHUA XIAO ◽  
WEI PAN

Prediction of biological functions of genes is an important issue in basic biology research and has applications in drug discoveries and gene therapies. Previous studies have shown either gene expression data or protein-protein interaction data alone can be used for predicting gene functions. In particular, clustering gene expression profiles has been widely used for gene function prediction. In this paper, we first propose a new method for gene function prediction using protein-protein interaction data, which will facilitate combining prediction results based on clustering gene expression profiles. We then propose a new method to combine the prediction results based on either source of data by weighting on the evidence provided by each. Using protein-protein interaction data downloaded from the GRID database, published gene expression profiles from 300 microarray experiments for the yeast S. cerevisiae, we show that this new combined analysis provides improved predictive performance over that of using either data source alone in a cross-validated analysis of the MIPS gene annotations. Finally, we propose a logistic regression method that is flexible enough to combine information from any number of data sources while maintaining computational feasibility.


Sign in / Sign up

Export Citation Format

Share Document