Molecular Classification of Multiple Myeloma: A Distinct Transcriptional Profile Characterizes Patients Expressing CCND1 and Negative for 14q32 Translocations

2005 ◽  
Vol 23 (29) ◽  
pp. 7296-7306 ◽  
Author(s):  
Luca Agnelli ◽  
Silvio Bicciato ◽  
Michela Mattioli ◽  
Sonia Fabris ◽  
Daniela Intini ◽  
...  

Purpose The deregulation of CCND1, CCND2 and CCND3 genes represents a common event in multiple myeloma (MM). A recently proposed classification grouped MM patients into five classes on the basis of their cyclin D expression profiles and the presence of the main translocations involving the immunoglobulin heavy chain locus (IGH) at 14q32. In this study, we provide a molecular characterization of the identified translocations/cyclins (TC) groups. Materials and Methods The gene expression profiles of purified plasma cells from 50 MM cases were used to stratify the samples into the five TC classes and identify their transcriptional fingerprints. The cyclin D expression data were validated by means of real-time quantitative polymerase chain reaction analysis; fluorescence in situ hybridization was used to investigate the cyclin D loci arrangements, and to detect the main IGH translocations and the chromosome 13q deletion. Results Class-prediction analysis identified 112 probe sets as characterizing the TC1, TC2, TC4 and TC5 groups, whereas the TC3 samples showed heterogeneous phenotypes and no marker genes. The TC2 group, which showed extra copies of the CCND1 locus and no IGH translocations or the chromosome 13q deletion, was characterized by the overexpression of genes involved in protein biosynthesis at the translational level. A meta-analysis of published data sets validated the identified gene expression signatures. Conclusion Our data contribute to the understanding of the molecular and biologic features of distinct MM subtypes. The identification of a distinctive gene expression pattern in TC2 patients may improve risk stratification and indicate novel therapeutic targets.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1548-1548
Author(s):  
Luca Agnelli ◽  
Silvio Bicciato ◽  
Michela Mattioli ◽  
Sonia Fabris ◽  
Daniela Intini ◽  
...  

Abstract The deregulation of CCND1, CCND2 and CCND3 genes represents a common event in multiple myeloma (MM), being at least one of them deregulated in almost all MM tumors. A recently proposed TC classification1 grouped MM patients into five classes on the basis of their cyclins D expression profiles and the presence of the main translocations involving the immunoglobulin heavy-chain (IGH) locus at 14q32. The aim of our study was to identify the putative transcriptional fingerprints associated with the deregulation of the different D-type cyclins and the presence of IGH translocations. The cyclin D expression levels obtained by high-density oligonucleotide microarray analysis of purified plasma cells from 50 MM cases were used to stratify the samples into the five TC classes, along with the molecular characteristics. The cyclin D expression data were validated by means of real-time quantitative PCR analysis; fluorescence in-situ hybridization was used to investigate the cyclin D loci arrangements, and to detect the main IGH translocations and the chromosome 13q deletion. A multi-class classification analysis was performed on the gene expression data and used to identify the transcriptional fingerprints of the 5 TC groups. 112 probe sets were selected as characterizing the TC1, TC2, TC4 and TC5 groups, whereas the TC3 samples showed heterogeneous phenotypes and no marker genes. In particular, TC1, TC4 and TC5 groups were characterized by the molecular signatures associated with the primary IGH translocations target genes. The TC2 group, showing significantly extra copies of the CCND1 locus (P=5.9×10−3) and neither IGH translocations nor the chromosome 13q deletion (P=1.7×10−3), was characterized by the overexpression of 30 genes, mainly involved in protein biosynthesis at translational level. Among the most specifically modulated transcripts within the group we identified a novel gene containing a BTB/POZ domain, typical of many zinc finger transcription factors and associated with transcriptional repression activity. A meta-analysis performed on two publicly available MM datasets, containing almost 250 cases, validated the identified gene expression signatures with a global classification rate (indicating the correct prediction of the TC class for the independent set) of 86% and 90%, respectively. Our data contribute to the understanding of the molecular and biological features of distinct MM subtypes; the identification of a distinctive gene expression pattern in TC2 patients may improve risk stratification and indicate novel therapeutic targets.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Chitrita Goswami ◽  
Smriti Chawla ◽  
Deepshi Thakral ◽  
Himanshu Pant ◽  
Pramod Verma ◽  
...  

Abstract Background Early diagnosis is crucial for effective medical management of cancer patients. Tissue biopsy has been widely used for cancer diagnosis, but its invasive nature limits its application, especially when repeated biopsies are needed. Over the past few years, genomic explorations have led to the discovery of various blood-based biomarkers. Tumor Educated Platelets (TEPs) have, of late, generated considerable interest due to their ability to infer tumor existence and subtype accurately. So far, a majority of the studies involving TEPs have offered marker-panels consisting of several hundreds of genes. Profiling large numbers of genes incur a significant cost, impeding its diagnostic adoption. As such, it is important to construct minimalistic molecular signatures comprising a small number of genes. Results To address the aforesaid challenges, we analyzed publicly available TEP expression profiles and identified a panel of 11 platelet-genes that reliably discriminates between cancer and healthy samples. To validate its efficacy, we chose non-small cell lung cancer (NSCLC), the most prevalent type of lung malignancy. When applied to platelet-gene expression data from a published study, our machine learning model could accurately discriminate between non-metastatic NSCLC cases and healthy samples. We further experimentally validated the panel on an in-house cohort of metastatic NSCLC patients and healthy controls via real-time quantitative Polymerase Chain Reaction (RT-qPCR) (AUC = 0.97). Model performance was boosted significantly after artificial data-augmentation using the EigenSample method (AUC = 0.99). Lastly, we demonstrated the cancer-specificity of the proposed gene-panel by benchmarking it on platelet transcriptomes from patients with Myocardial Infarction (MI). Conclusion We demonstrated an end-to-end bioinformatic plus experimental workflow for identifying a minimal set of TEP associated marker-genes that are predictive of the existence of cancers. We also discussed a strategy for boosting the predictive model performance by artificial augmentation of gene expression data.


Blood ◽  
2005 ◽  
Vol 106 (1) ◽  
pp. 296-303 ◽  
Author(s):  
P. Leif Bergsagel ◽  
W. Michael Kuehl ◽  
Fenghuang Zhan ◽  
Jeffrey Sawyer ◽  
Bart Barlogie ◽  
...  

Two oncogenic pathways have been hypothesized for multiple myeloma (MM) and premalignant monoclonal gammopathy of undetermined significance (MGUS) tumors: a nonhyperdiploid pathway associated with a high prevalence of IgH translocations and a hyperdiploid pathway associated with multiple trisomies of 8 chromosomes. Cyclin D1, D2, or D3 expression appears to be increased and/or dysregulated in virtually all MM tumors despite their low proliferative capacity. Translocations can directly dysregulate CCND1 (11q13) or CCND3 (6p21), or MAF (16q23) or MAFB (20q11) transcription factors that target CCND2. Biallelic dysregulation of CCND1 occurs in nearly 40% of tumors, most of which are hyperdiploid. Other tumors express increased CCND2, either with or without a t(4;14) translocation. Using gene expression profiling to identify 5 recurrent translocations, specific trisomies, and expression of cyclin D genes, MM tumors can be divided into 8 TC (translocation/cyclin D) groups (11q13, 6p21, 4p16, maf, D1, D1+D2, D2, and none) that appear to be defined by early, and perhaps initiating, oncogenic events. However, despite subsequent progression events, these groups have differing gene expression profiles and also significant differences in the prevalence of bone disease, frequency at relapse, and progression to extramedullary tumor.


Author(s):  
Aravind P ◽  
Sarojini R. Bulbule ◽  
Hemalatha N ◽  
Anushree G ◽  
Babu R.L ◽  
...  

Abstract Background Free radicals generated in the biological system bring about modifications in biological molecules causing damage to their structure and function. Identifying the damage caused by ROS and RNS is important to predict the pathway of apoptosis due to stress in PC12 cells. The first defense mechanisms against them are antioxidants which act in various pathways through important cellular organelles like the mitochondria and endoplasmic reticulum. Specific biomarkers like Gadd153 which is a marker for endoplasmic reticulum stress, Nrf2 which responds to the redox changes and translocates the antioxidant response elements, and Btg2 which is an antioxidant regulator have not been addressed in different stress conditions previously in PC12 cells. Therefore, the study was conducted to analyze the gene expression pattern (SOD, Catalase, Btg2, Gadd153, and Nrf2) and the protein expression pattern (iNOS and MnSOD) of the antioxidant stress markers in differential stress-induced PC12 cells. Peroxynitrite (1 μM), rotenone (1 μM), H2O2(100 mM), and high glucose (33 mM) were used to induce oxidative and nitrosative stress in PC12 cells. Results The results obtained suggested that rotenone-induced PC12 cells showed a significant increase in the expression of catalase, Btg2, and Gadd153 compared to the control. Peroxynitrite-induced PC12 cells showed higher expression of Btg2 compared to the control. H2O2 and high glucose showed lesser expression compared to the control in all stress marker genes. In contrast, the Nrf2 gene expression is downregulated in all the stress-induced PC12 cells compared to the control. Further, MnSOD and iNOS protein expression studies suggest that PC12 cells exhibit a selective downregulation. Lower protein expression of MnSOD and iNOS may be resulted due to the mitochondrial dysfunction in peroxynitrite-, high glucose-, and H2O2-treated cells, whereas rotenone-induced cells showed lower expression, which could be the result of a dysfunction of the endoplasmic reticulum. Conclusion Different stress inducers like rotenone, peroxynitrite, H2O2, and high glucose increase the NO and ROS. Btg2 and Gadd153 genes were upregulated in the stress-induced cells, whereas the Nrf2 was significantly downregulated in differential stress-induced PC12 cells. Further, antioxidant marker genes were differentially expressed with different stress inducers.


2012 ◽  
Vol 39 (5) ◽  
pp. 916-928 ◽  
Author(s):  
BERTALAN MESKO ◽  
SZILARD POLISKA ◽  
SZILVIA SZAMOSI ◽  
ZOLTAN SZEKANECZ ◽  
JANOS PODANI ◽  
...  

Objective.Tocilizumab, a humanized anti-interleukin-6 receptor monoclonal antibody, has recently been approved as a biological therapy for rheumatoid arthritis (RA) and other diseases. It is not known if there are characteristic changes in gene expression and immunoglobulin G glycosylation during therapy or in response to treatment.Methods.Global gene expression profiles from peripheral blood mononuclear cells of 13 patients with RA and active disease at Week 0 (baseline) and Week 4 following treatment were obtained together with clinical measures, serum cytokine levels using ELISA, and the degree of galactosylation of the IgG N-glycan chains. Gene sets separating responders and nonresponders were tested using canonical variates analysis. This approach also revealed important gene groups and pathways that differentiate responders from nonresponders.Results.Fifty-nine genes showed significant differences between baseline and Week 4 and thus correlated with treatment. Significantly, 4 genes determined responders after correction for multiple testing. Ten of the 12 genes with the most significant changes were validated using real-time quantitative polymerase chain reaction. An increase in the terminal galactose content of N-linked glycans of IgG was observed in responders versus nonresponders, as well as in treated samples versus samples obtained at baseline.Conclusion.As a preliminary report, gene expression changes as a result of tocilizumab therapy in RA were examined, and gene sets discriminating between responders and nonresponders were found and validated. A significant increase in the degree of galactosylation of IgG N-glycans in patients with RA treated with tocilizumab was documented.


PLoS ONE ◽  
2013 ◽  
Vol 8 (3) ◽  
pp. e58809 ◽  
Author(s):  
Yingxiang Li ◽  
Xujun Wang ◽  
Haiyang Zheng ◽  
Chengyang Wang ◽  
Stéphane Minvielle ◽  
...  

2021 ◽  
Vol 27 ◽  
Author(s):  
Xili Jiang ◽  
Wei Zhang ◽  
Lifeng Li ◽  
Shucai Xie

Hepatocellular carcinoma (HCC), a high mortality malignancy, has become a worldwide public health concern. Acquired resistance to the multikinase inhibitor sorafenib challenges its clinical efficacy and the survival benefits it provides to patients with advanced HCC. This study aimed to identify critical genes and pathways associated with sorafenib resistance in HCC using integrated bioinformatics analysis. Differentially expressed genes (DEGs) were identified using four HCC gene expression profiles (including 34 sorafenib-resistant and 29 sorafenib-sensitive samples) based on the robust rank aggregation method and R software. Gene ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) online tool. A protein–protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes (STRING), and small molecules reversing sorafenib resistance were searched for using the connectivity map (CMAP) database. Pearson correlation and survival analyses of hub genes were performed using cBioPortal and Gene Expression Profiling and Interactive Analysis (GEPIA). Finally, the expression levels of hub genes in sorafenib-resistant HCC cells were verified using quantitative polymerase chain reaction (q-PCR). A total of 165 integrated DEGs (66 upregulated and 99 downregulated in sorafenib resistant samples compared sorafenib sensitive ones) primarily enriched in negative regulation of endopeptidase activity, extracellular exosome, and protease binding were identified. Some pathways were commonly shared between the integrated DEGs. Seven promising therapeutic agents and 13 hub genes were identified. These findings provide a strategy and theoretical basis for overcoming sorafenib resistance in HCC patients.


2021 ◽  
Vol 10 ◽  
Author(s):  
Heather Fairfield ◽  
Samantha Costa ◽  
Carolyne Falank ◽  
Mariah Farrell ◽  
Connor S. Murphy ◽  
...  

Within the bone marrow microenvironment, mesenchymal stromal cells (MSCs) are an essential precursor to bone marrow adipocytes and osteoblasts. The balance between this progenitor pool and mature cells (adipocytes and osteoblasts) is often skewed by disease and aging. In multiple myeloma (MM), a cancer of the plasma cell that predominantly grows within the bone marrow, as well as other cancers, MSCs, preadipocytes, and adipocytes have been shown to directly support tumor cell survival and proliferation. Increasing evidence supports the idea that MM-associated MSCs are distinct from healthy MSCs, and their gene expression profiles may be predictive of myeloma patient outcomes. Here we directly investigate how MM cells affect the differentiation capacity and gene expression profiles of preadipocytes and bone marrow MSCs. Our studies reveal that MM.1S cells cause a marked decrease in lipid accumulation in differentiating 3T3-L1 cells. Also, MM.1S cells or MM.1S-conditioned media altered gene expression profiles of both 3T3-L1 and mouse bone marrow MSCs. 3T3-L1 cells exposed to MM.1S cells before adipogenic differentiation displayed gene expression changes leading to significantly altered pathways involved in steroid biosynthesis, the cell cycle, and metabolism (oxidative phosphorylation and glycolysis) after adipogenesis. MM.1S cells induced a marked increase in 3T3-L1 expression of MM-supportive genes including Il-6 and Cxcl12 (SDF1), which was confirmed in mouse MSCs by qRT-PCR, suggesting a forward-feedback mechanism. In vitro experiments revealed that indirect MM exposure prior to differentiation drives a senescent-like phenotype in differentiating MSCs, and this trend was confirmed in MM-associated MSCs compared to MSCs from normal donors. In direct co-culture, human mesenchymal stem cells (hMSCs) exposed to MM.1S, RPMI-8226, and OPM-2 prior to and during differentiation, exhibited different levels of lipid accumulation as well as secreted cytokines. Combined, our results suggest that MM cells can inhibit adipogenic differentiation while stimulating expression of the senescence associated secretory phenotype (SASP) and other pro-myeloma molecules. This study provides insight into a novel way in which MM cells manipulate their microenvironment by altering the expression of supportive cytokines and skewing the cellular diversity of the marrow.


2019 ◽  
Vol 58 (1) ◽  
pp. 30-38
Author(s):  
Patricia Navarro-Rodríguez ◽  
Adela Martin-Vicente ◽  
Loida López-Fernández ◽  
Josep Guarro ◽  
Javier Capilla

AbstractCandida glabrata causes difficult to treat invasive candidiasis due to its antifungal resistance, mainly to azoles. The aim of the present work was to study the role of the genes ERG11, CDR1, CDR2, and SNQ2 on the resistance to voriconazole (VRC) in a set of C. glabrata strains with known in vitro and in vivo susceptibility to this drug. Eighteen clinical isolates of C. glabrata were exposed in vitro to VRC, and the expression of the cited genes was quantified by real time quantitative polymerase chain reaction (q-PCR). In addition, the ERG11 gene was amplified and sequenced to detect possible mutations. Ten synonymous mutations were found in 15 strains, two of them being reported for the first time; however, no amino acid changes were detected. ERG11 and CDR1 were the most expressed genes in all the strains tested, while the expression of CDR2 and SNQ2 was modest. Our results show that gene expression does not directly correlate with the VRC MIC. In addition, the expression profiles of ERG11 and efflux pump genes did not change consistently after exposure to VRC. Although individual analysis did not result in a clear correlation between MIC and gene expression, we did observe an increase in ERG11 and CDR1 expression in resistant strains. It is of interest that considering both in vitro and in vivo results, the slight increase in such gene expression correlates with the observed resistance to VRC.


2011 ◽  
Vol 92 (7) ◽  
pp. 1571-1584 ◽  
Author(s):  
Astrid Friebe ◽  
Sonja Friederichs ◽  
Kai Scholz ◽  
Uwe Janssen ◽  
Corinna Scholz ◽  
...  

Inactivated orf virus (ORFV, parapoxvirus ovis) induces antiviral activity in animal models of acute and chronic viral infections and exerts strong effects on human immune cells. ORFV activates antigen presenting cells (APC) via CD14 and, probably, Toll-like receptor signalling, and triggers the release of IFN-γ that has been identified as the key mediator of the antiviral activity. After delineating virus proteins as being the most likely active constituent, we aimed to characterize the ORFV proteins responsible for the therapeutic effect. By using a vaccinia virus/ORFV expression library we identified several multi-gene DNA fragments with strong immunomodulatory activity. Together these fragments contain 27 ORFs. The encoded proteins are related to virion structure and transcription but are otherwise unrelated. Two proteins were separately expressed and purified, and demonstrated immunostimulatory activity. Gene expression profiles induced by ORFV and the identified fragments were investigated by microarray analysis. Interestingly, all active fragments induced a similar gene-expression pattern, differing only in quantitative aspects. Obviously, several proteins of ORFV activate similar cellular pathways, modulating APC to generate a strong T-helper 1-dominated immune response. This was balanced by additional induction of immune dampening mechanisms, suggesting regulatory differences compared to single cytokine therapies. We conclude that ORFV may have the potential to enrich the armamentarium of antiviral therapies.


Sign in / Sign up

Export Citation Format

Share Document