Possible role of autophagy inhibition in hypoxia-induced chemoresistance of pancreatic cancer cells.

2012 ◽  
Vol 30 (4_suppl) ◽  
pp. 224-224 ◽  
Author(s):  
Yoon Ho Ko ◽  
Young-Seok Cho ◽  
Hye Sung Won ◽  
Eun Kyoung Jeon ◽  
Young Seon Hong

224 Background: Autophagy is a catabolic process and provides metabolic support for the cell by degradation of intracellular macromolecules. Various types of stress, including hypoxia, activate autophagy. Recent studies have suggested that hypoxia has been shown to associate with resistance to chemotherapy and radiation therapy and hence poor prognosis in pancreatic cancer. This study investigated the role of autophagy in the treatment of pancreatic cancer with gemcitabine under hypoxic condition. Methods: To evaluate the role of autophagy inhibition in hypoxia-induced chemoresistance, BxPC-3 human pancreatic cancer cell line was used under normoxic and hypoxic conditions.We evaluated the extent of LC3-II, as an autophagosome marker, induced by gemcitabine, by western blotting to measure the hypoxia- or chemotherapy- induced autophagy. We then examined the effects of gemcitabine on induction of apoptosis under normoxic and hypoxic conditions. Next, to determine the effect of 3-MA, a known inhibitor of autophagy, on overcoming hypoxia-induced chemoresistance, the MTS assay and flow cytometry were performed. Results: Compared with normoxia, gemcitabine-induced cell death under hypoxia was significantly decreased, as a result of the reduced apoptosis. Western blotting analysis demonstrated that LC3-II was increased under hypoxia, compared with normoxia.However, we found that 3-MA can enhance the growth inhibition and apoptotic effect of gemcitabine, even under hypoxia. These findings mean that autophagy mediates the chemoresistance under hypoxia. Conclusions: Activated autophagy plays a role in hypoxia-induced chemoresistance of pancreatic cancer cells. These findings may have important implications for future therapeutic strategies using gemcitabine against pancreatic cancer.

Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2017
Author(s):  
Lital Sharvit ◽  
Rinat Bar-Shalom ◽  
Naiel Azzam ◽  
Yaniv Yechiel ◽  
Solomon Wasser ◽  
...  

Pancreatic cancer is a highly lethal disease with limited options for effective therapy and the lowest survival rate of all cancer forms. Therefore, a new, effective strategy for cancer treatment is in need. Previously, we found that a culture liquid extract of Cyathus striatus (CS) has a potent antitumor activity. In the present study, we aimed to investigate the effects of Cyathus striatus extract (CSE) on the growth of pancreatic cancer cells, both in vitro and in vivo. The proliferation assay (XTT), cell cycle analysis, Annexin/PI staining and TUNEL assay confirmed the inhibition of cell growth and induction of apoptosis by CSE. A Western blot analysis demonstrated the involvement of both the extrinsic and intrinsic apoptosis pathways. In addition, a RNAseq analysis revealed the involvement of the MAPK and P53 signaling pathways and pointed toward endoplasmic reticulum stress induced apoptosis. The anticancer activity of the CSE was also demonstrated in mice harboring pancreatic cancer cell line-derived tumor xenografts when CSE was given for 5 weeks by weekly IV injections. Our findings suggest that CSE could potentially be useful as a new strategy for treating pancreatic cancer.


2020 ◽  
Vol 64 (2) ◽  
pp. 103-113
Author(s):  
He-jun Zhao ◽  
Xia Jiang ◽  
Li-juan Hu ◽  
Lei Yang ◽  
Lian-dong Deng ◽  
...  

This study aimed to determine whether and how the glucagon-like peptide 1 receptor (GLP-1R) agonist liraglutide affects the chemoresistance and chemosensitivity of pancreatic cancer cells to gemcitabine in vitro and in vivo. The GLP-1R and protein kinase A (PKA) levels were compared between the human pancreatic cancer cell line PANC-1 and the gemcitabine-resistant cell line PANC-GR. The in vitro effects of liraglutide on the cell proliferation and apoptosis as well as the nuclear factor-kappa B NF-κB expression levels of PANC-GR cells were evaluated. In addition, a mouse xenograft model of human pancreatic cancer was established by s.c. injection of PANC-1 cells, and the effects of liraglutide on the chemosensitivity were evaluated in vitro and in vivo. In contrast to PANC-1 cells, PANC-GR cells exhibited lower expression levels of GLP-1R and PKA. Incubation with liraglutide dose dependently inhibited the growth, promoted the apoptosis, and increased the expression of GLP-1R and PKA of PANC-GR cells. Similar effects of liraglutide were observed in another human pancreatic cancer cell line MiaPaCa-2/MiaPaCa-2-GR. Either the GLP-1R antagonist Ex-9, the PKA inhibitor H89, or the NF-κB activator lipopolysaccharide (LPS) could abolish the antiproliferative and proapoptotic activities of liraglutide. Additionally, each of these agents could reverse the expression of NF-κB and ABCG2, which was decreased by liraglutide treatment. Furthermore, liraglutide treatment increased the chemosensitivity of pancreatic cancer cells to gemcitabine, as evidenced by in vitro and in vivo experiments. Thus, GLP-1R agonists are safe and beneficial for patients complicated with pancreatic cancer and diabetes, especially for gemcitabine-resistant pancreatic cancer.


2021 ◽  
Vol 11 ◽  
Author(s):  
Congjun Zhang ◽  
Shuangyan Ou ◽  
Yuan Zhou ◽  
Pei Liu ◽  
Peiying Zhang ◽  
...  

ObjectivePancreatic cancer is one of the most lethal human malignancies. Gemcitabine is widely used to treat pancreatic cancer, and the resistance to chemotherapy is the major difficulty in treating the disease. N6-methyladenosine (m6A) modification, which regulates RNA splicing, stability, translocation, and translation, plays critical roles in cancer physiological and pathological processes. METTL14, an m6A Lmethyltransferase, was found deregulated in multiple cancer types. However, its role in gemcitabine resistance in pancreatic cancer remains elusive.MethodsThe mRNA and protein level of m6A modification associated genes were assessed by QRT-PCR and western blotting. Then, gemcitabine‐resistant pancreatic cancer cells were established. The growth of pancreatic cancer cells were analyzed using CCK8 assay and colony formation assay. METTL14 was depleted by using shRNA. The binding of p65 on METTL14 promoter was assessed by chromatin immunoprecipitation (ChIP) assay. Protein level of deoxycytidine kinase (DCK) and cytidine deaminase (CDA) was evaluated by western blotting. In vivo experiments were conducted to further confirm the critical role of METTL14 in gemcitabine resistance.ResultsWe found that gemcitabine treatment significantly increased the expression of m6A methyltransferase METTL14, and METTL14 was up-regulated in gemcitabine-resistance human pancreatic cancer cells. Suppression of METTL14 obviously increased the sensitivity of gemcitabine in resistant cells. Moreover, we identified that transcriptional factor p65 targeted the promoter region of METTL14 and up-regulated its expression, which then increased the expression of cytidine deaminase (CDA), an enzyme inactivates gemcitabine. Furthermore, in vivo experiment showed that depletion of METTL14 rescue the response of resistance cell to gemcitabine in a xenograft model.ConclusionOur study suggested that METTL14 is a potential target for chemotherapy resistance in pancreatic cancer.


Cancers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 277
Author(s):  
Jungwhoi Lee ◽  
Jungsul Lee ◽  
Woogwang Sim ◽  
Jae-Hoon Kim

Even though the tumour suppressive role of PTEN is well-known, its prognostic implications are ambiguous. The objective of this study was to further explore the function of PTEN expression in human pancreatic cancer. The expression of PTEN has been dominant in various human cancers including pancreatic cancer when compared with their matched normal tissues. The pancreatic cancer cells have been divided into PTEN blockade-susceptible and PTEN blockade-impassible groups dependent on targeting PTEN by altering intracellular signaling. The expression of PTEN has led to varying clinical outcomes of pancreatic cancer based on GEO Series (GSE) data analysis and Liptak’s z analysis. Differential dependency to PTEN blockade has been ascertained based on the expression of polo-like kinase1 PLK1 in pancreatic cancer cells. The prognostic value of PTEN also depends on PLK1 expression in pancreatic cancer. Collectively, the present study provides a rationale for targeting PTEN as a promising therapeutic strategy dependent on PLK1 expressions using a companion biomarker discovery platform.


2017 ◽  
Vol 8 (7) ◽  
pp. e2924-e2924 ◽  
Author(s):  
Yuran Gao ◽  
Zhicheng Zhang ◽  
Kai Li ◽  
Liying Gong ◽  
Qingzhu Yang ◽  
...  

AbstractThe acquisition of epithelial–mesenchymal transition (EMT) and/or existence of a sub-population of cancer stem-like cells (CSC) are associated with malignant behavior and chemoresistance. To identify which factor could promote EMT and CSC formation and uncover the mechanistic role of such factor is important for novel and targeted therapies. In the present study, we found that the long intergenic non-coding RNA linc-DYNC2H1-4 was upregulated in pancreatic cancer cell line BxPC-3-Gem with acquired gemcitabine resistance. Knockdown of linc-DYNC2H1-4 decreased the invasive behavior of BxPC-3-Gem cells while ectopic expression of linc-DYNC2H1-4 promoted the acquisition of EMT and stemness of the parental sensitive cells. Linc-DYNC2H1-4 upregulated ZEB1, the EMT key player, which led to upregulation and downregulation of its targets vimentin and E-cadherin respectively, as well as enhanced the expressions of CSC makers Lin28, Nanog, Sox2 and Oct4. Linc-DYNC2H1-4 is mainly located in the cytosol. Mechanically, it could sponge miR-145 that targetsZEB1,Lin28,Nanog,Sox2,Oct4to restore these EMT and CSC-associated genes expressions. We proved thatMMP3, the nearby gene of linc-DYNC2H1-4 in the sense strand, was also a target of miR-145. Downregulation ofMMP3by miR-145 was reverted by linc-DYNC2H1-4, indicating that competing with miR-145 is one of the mechanisms for linc-DYNC2H1-4 to regulateMMP3. In summary, our results explore the important role of linc-DYNC2H1-4 in the acquisition of EMT and CSC, and the impact it has on gemcitabine resistance in pancreatic cancer cells.


2015 ◽  
Vol 39 (2) ◽  
pp. 123-127 ◽  
Author(s):  
Shima Byagowi ◽  
Taghi Naserpour Farivar ◽  
Reza Najafipour ◽  
Mehdi Sahmani ◽  
Masoud Darabi ◽  
...  

2014 ◽  
Vol 453 (3) ◽  
pp. 533-538 ◽  
Author(s):  
Jian-ying Tang ◽  
Tu Dai ◽  
Hui Zhang ◽  
Wu-jun Xiong ◽  
Ming-zheng Xu ◽  
...  

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A1019-A1020
Author(s):  
Reetobrata Basu ◽  
John Joseph Kopchick ◽  
Silvana Duran Ortiz ◽  
Yanrong Qian ◽  
Prateek Kulkarni

Abstract Human growth hormone (GH) and its cognate growth hormone receptor (GHR) have been established to have a distinct role in promoting the progression of several types of human cancers. We had earlier described a newfound role of the GH-GHR axis in driving chemoresistance in melanoma by upregulating drug efflux by ABC multidrug transporter expression and a phenotype switch by induction of epithelial-to-mesenchymal transition (EMT). Here we present an in-depth analysis of this role of GH-GHR in the highly therapy resistant human pancreatic cancer which has a 5-year survival rate of only 10% in 2020. Using human and mouse pancreatic cancer cells and RNA and protein expression analyses by RT-qPCR, ELISA, and western-blot, we identified that (i) GH upregulates specific ABC-transporter expressions in a drug-context specific manner, (ii) GH upregulates EMT transcription factors, (iii) GH activates specific oncogenic signaling pathways, and (iii) GH action increases cytochrome P450 members involved in hepatic drug metabolism. The GH antagonist, Pegvisomant, significantly inhibited these effects. Additionally, we confirmed the effects of these molecular changes by specific assays. For example, GH increases basement membrane invasion, viability of circulating tumor cells, and drug efflux; while inhibition of GHR by pegvisomant in pancreatic cancer cells reversed this aggressive tumor phenotype and sensitized the tumor cells to chemotherapy. Cell viability assays confirmed a decreased IC50 of gemcitabine, doxorubicin, and erlotinib in pancreatic cancer cells treated with pegvisomant and an increase in IC50 cells treated with GH. We further verified our results using in silico analyses of TCGA datasets for pancreatic cancer - which provided robust confirmation of our experimental findings. Presently we are validating our observation in nude mice with human pancreatic cancer cell xenografts. In conclusion, our in vitro results confirm that GHR antagonism can drastically sensitize human pancreatic cancer cells by blocking mechanisms of drug resistance, thus providing a valuable window for improved efficacy of available chemo- and targeted therapy.


Proceedings ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 22
Author(s):  
Violetta Krajka-Kuźniak ◽  
Marta Cykowiak ◽  
Wanda Baer-Dubowska

Pancreatic adenocarcinoma mainly occurs in elderly people. Thus, the management of pancreatic cancer in the aging population is becoming increasingly relevant. In this preliminary study we evaluated the effect of selected phytochemicals and their combinations on the expression and activation of Nrf2 transcription factor in the human pancreatic cancer cell line MIA-Pa-Ca-2. Treatment for 24 h with xanthohumol (X), resveratrol (RES), indole-3-carbinol (I3C) or phenethyl isothiocyanate (PEITC) had no effect on the expression and activation of Nrf2, or the expression of the SOD gene controlled by Nrf2. However, combinations of these phytochemicals significantly increased Nrf2 activation and subsequently the expression of SOD. The most efficient were the mixtures of resveratrol and glucosinolates degradation products, I3C and PEITC. These results indicate that combinations of phytochemicals resembling that occurring in natural diets may efficiently modulate the signaling pathways, whose proper function is important for pancreatic cancer prophylaxis or improving the results of conventional therapy.


Sign in / Sign up

Export Citation Format

Share Document