ERO1L shapes the immune-suppressive tumor microenvironment and is a potential biomarker for immunotherapy response in lung adenocarcinoma.

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e21006-e21006
Author(s):  
Lihui Liu ◽  
Chao Wang ◽  
Sini Li ◽  
Pei Xue ◽  
Hua Bai ◽  
...  

e21006 Background: Recently, immune checkpoint inhibitors have led to a paradigm shift in treatment for patients with lung adenocarcinoma (LUAD), however, the identification of biomarkers to enable patient selection is urgently required. The endoplasmic reticulum oxidoreductin-1-like ( ERO1L) gene encodes an endoplasmic reticulum luminal localized glycoprotein known to associated with hypoxia. The role of ERO1L in the crafting of the tumor immune microenvironment (TIME) is yet to be elucidated. Methods: In this study, raw datasets (including RNA-seq, methylation, sgRNA-seq, phenotype, and survival data) were obtained from public databases. This data was analyzed and used to explore the biological landscape of ERO1L in immune infiltration. Expression data was used to characterize samples. Using gene signatures and cell quantification, stromal and immune infiltration was determined. These findings were used to predict sensitivity to immunotherapy. Results: We identified ERO1L to be an oncogene, the mRNA expression of which is significantly higher in LUAD compared with normal tissues. High expression levels of ERO1L were associated with poor prognoses in terms of overall survival (HR: 1.52, 95% CI: 1.27-1.82) and progression-free survival (HR: 1.93, 95% CI: 1.47-2.53). This overexpression was found to be a result of hypomethylation of the ERO1L promoter. Overexpression of ERO1L resulted in an immune-suppressive TIME via the recruitment of immune-suppressive cells including regulatory T cells (Spearman’s ρ = 0.199, p < 0.001) cancer associated fibroblasts (ρ = 0.286, p < 0.001), and myeloid-derived suppressor cells (ρ = 0.423, p < 0.001), and also indicated the polarization of M1-type to M2-type macrophage. On the contrary, overexpression of ERO1L was closely associated with deficiency of immune-active cells including B cells (ρ = -0.250, p < 0.001), CD8+ T cells (ρ = -0.299, p < 0.001), and NK cells (ρ = -0.258, p < 0.001). Using the Tumor Immune Dysfunction and Exclusion (TIDE) framework, it was identified that patients in the ERO1Lhigh group possessed a significantly lower response rate (31.0%) to immunotherapy compared with the ERO1Llow group (86.0%). Mechanistic analysis revealed that overexpression of ERO1L was associated with the upregulation of JAK-STAT (NES = 1.65, FDR q-value = 0.0) and NF-κB (NES = 2.03, FDR q-value = 0.0) signaling pathways, thus affecting chemokine and cytokine patterns in the TIME. Conclusions: Our study provides clear insight into the potential role of ERO1L in tumor immunology. Overexpression of ERO1L was indicative of a hypoxia-induced immune-suppressive TIME, which was shown to confer resistance to immunotherapy in patients with LUAD. ERO1L was shown to mediate cytokine and chemokine patterns in the TIME, which were resulted from activations of JAK-STAT and NF-κB signaling pathways.

2021 ◽  
Vol 12 ◽  
Author(s):  
Lihui Liu ◽  
Chao Wang ◽  
Sini Li ◽  
Yan Qu ◽  
Pei Xue ◽  
...  

BackgroundThe endoplasmic reticulum oxidoreductin-1-like (ERO1L) gene encodes an endoplasmic reticulum luminal localized glycoprotein known to associated with hypoxia, however, the role of ERO1L in shaping the tumor immune microenvironment (TIME) is yet to be elucidated in lung adenocarcinoma (LUAD).MethodsIn this study, raw datasets (including RNA-seq, methylation, sgRNA-seq, phenotype, and survival data) were obtained from public databases. This data was analyzed and used to explore the biological landscape of ERO1L in immune infiltration. Expression data was used to characterize samples. Using gene signatures and cell quantification, stromal and immune infiltration was determined. These findings were used to predict sensitivity to immunotherapy.ResultsThis study found that ERO1L was significantly overexpressed in LUAD in comparison to normal tissue. This overexpression was found to be a result of hypomethylation of the ERO1L promoter. Overexpression of ERO1L resulted in an immune-suppressive TIME via the recruitment of immune-suppressive cells including regulatory T cells (Tregs), cancer associated fibroblasts, M2-type macrophages, and myeloid-derived suppressor cells. Using the Tumor Immune Dysfunction and Exclusion (TIDE) framework, it was identified that patients in the ERO1Lhigh group possessed a significantly lower response rate to immunotherapy in comparison to the ERO1Llow group. Mechanistic analysis revealed that overexpression of ERO1L was associated with the upregulation of JAK-STAT and NF-κB signaling pathways, thus affecting chemokine and cytokine patterns in the TIME.ConclusionsThis study found that overexpression of ERO1L was associated with poor prognoses in patients with LUAD. Overexpression of ERO1L was indicative of a hypoxia-induced immune-suppressive TIME, which was shown to confer resistance to immunotherapy in patients with LUAD. Further studies are required to assess the potential role of ERO1L as a biomarker for immunotherapy efficacy in LUAD.


2021 ◽  
Author(s):  
Aitao Nai ◽  
SHOAIB BASHIR ◽  
Ling Jin ◽  
Zirui He ◽  
Shuwen Zeng ◽  
...  

Abstract Background: Interleukin-11 receptor subunit alpha (IL-11RA) contributes to multiple biological processes in various tumors. However, the role of IL-11RA in Lung adenocarcinoma (LUAD) is still undetermined. The study aims to explore the role of IL-11RA in LUAD via an integrated bioinformatics analysis. Methods: TIMER, GEPIA, TCGA and HPA databases analysis were used to detect IL-11RA expression. UALCAN database was used to analysis the correlation between IL-11RA expression and clinicopathological parameters of LUAD. Kaplan-Meier Plotter, TCGA and GEO databases were used to analysis overall survival (OS) and progression-free survival (PFS) of the LUAD patients. Univariate Cox regression analysis was used to assess the prognostic value of IL-11RA in different clinical characteristics. GSEA, and TIMER were used to investigate the relationship between IL-11RA and immune infiltration.Results: The expression of IL-11RA was down-regulated in LUAD tissues. Furthermore, IL-11RA expression was closely associated with clinical stage, lymph node stage and smoking habits. The patients with lower IL-11RA expression had poorer overall survival (OS) and progression-free survival (PFS). Lower IL-11RA expression was significantly associated with its hypermethylation, and the hypermethylation of CpG site at cg14609668 and cg21504624 was obviously correlated with poorer OS. Then, we found that IL-11RA may play an important role in LUAD progression and immune regulations. Notably, High expression of IL-11RA may suppress the progression of LUAD through inhibiting cell proliferation and immune cell infiltration, especially in B cells, CD4+ T cells, and Dendritic Cell. Conclusions: Decreased IL-11RA expression correlates with poor prognosis and immune infiltration in LUAD. Our work highlights IL-11RA might be a potential biomarker for prognosis and provide a new therapeutic target for LUAD patients.


2021 ◽  
Author(s):  
Lianxiang Luo ◽  
Manshan Li ◽  
Jiating Su ◽  
Xinyue Yao ◽  
Hui Luo

Abstract FURIN, as a proprotein convertase, has been found to be expressed in a variety of cancers and plays an important role in cancer. In addition, SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) requires FURIN to enter human cells. However, the role of FURIN in lung adenocarcinoma remains unclear. And the expression of SARS-CoV-2 related gene in lung adenocarcinoma has not been clarified. Therefore, in order to explore the prognostic value and mechanism of FURIN in lung adenocarcinoma, we performed bioinformatics analysis with Oncomine, TIMER (Tumor Immune Estimation Resource), GEPIA (Gene Expression Profiling Interactive Analysis), HPA (human protein atlas), UALCAN, PrognoScan, Kaplan-Meier plotter, cBioPortal, and LinkedOmics databases. And then We used GSE44274 in the GEO (Gene Expression Omnibus) database to analyze the expression of FURIN in LUAD patients who infected with SARS-CoV. FURIN was highly expressed in lung adenocarcinoma and was significantly associated with poor overall survival. FURIN expression was found to be correlated with six major permeable immune cells and with macrophage immune marker in LUAD patients. In addition, SARS-CoV-2 infection might affect the expression of FURIN. FURIN can be used as a promising biomarker for determining prognosis and immune infiltration in LUAD patients.


2021 ◽  
Author(s):  
Lianxiang Luo ◽  
Manshan Li ◽  
Jiating Su ◽  
Xinyue Yao ◽  
Hui Luo

Abstract Background: FURIN, as a proprotein invertase, has been found to be expressed in a variety of cancers and plays an important role in cancer. In addition, SARS-CoV-2 requires FURIN to enter human cell. However, the role of FURIN in lung adenocarcinoma remains unclear. And the expression of SARS-CoV-2 related gene in lung adenocarcinoma have not been clarify. Methods: In this study, we obtained the expression data of Oncomine, TIMER, GEPIA, HPA. Then we used UALCAN database to analyze the expression of FURIN in different clinical feature subgroups. In PrognoScan and Kaplan-Meier plotter databases, we found a certain association between FURIN and poor OS outcomes in LUAD patients. Then we used the cBioPortal database to determine the type and frequency of FURIN changes in LUAD patients. Studies based on the TIMER database show a strong correlation between FURIN expression and various immune cell infiltrates and markers. Analysis in UALCAN database showed that the decreased promoter methylation level of FURIN in LUAD may lead to the high expression of FURIN. Furthermore, we used the LinkedOmics database to evaluate gene co-expression of FURIN in LUAD and to investigate their role in tumor immunity. Finally, we evaluated the expression of FURIN in LUAD patients who infected with SARS-CoV.Results: FURIN was highly expressed in lung adenocarcinoma. And FURIN expression was significantly associated with poor overall survival. FURIN expression was found to be correlated with six major permeable immune cells and with macrophage immune marker in LUAD patients. In addition, SARS-CoV-2 infection might affect the expression of FURIN. Conclusions: FURIN, as SARS-CoV-2 related gene, was highly expressed in LUAD. Furthermore, FURIN can be used as a promising biomarker for determining prognosis and immune infiltration in LUAD patients.


Author(s):  
Lu Yuan ◽  
Xixi Wu ◽  
Longshan Zhang ◽  
Mi Yang ◽  
Xiaoqing Wang ◽  
...  

AbstractPulmonary surfactant protein A1 (SFTPA1) is a member of the C-type lectin subfamily that plays a critical role in maintaining lung tissue homeostasis and the innate immune response. SFTPA1 disruption can cause several acute or chronic lung diseases, including lung cancer. However, little research has been performed to associate SFTPA1 with immune cell infiltration and the response to immunotherapy in lung cancer. The findings of our study describe the SFTPA1 expression profile in multiple databases and was validated in BALB/c mice, human tumor tissues, and paired normal tissues using an immunohistochemistry assay. High SFTPA1 mRNA expression was associated with a favorable prognosis through a survival analysis in lung adenocarcinoma (LUAD) samples from TCGA. Further GeneOntology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses showed that SFTPA1 was involved in the toll-like receptor signaling pathway. An immune infiltration analysis clarified that high SFTPA1 expression was associated with an increased number of M1 macrophages, CD8+ T cells, memory activated CD4+ T cells, regulatory T cells, as well as a reduced number of M2 macrophages. Our clinical data suggest that SFTPA1 may serve as a biomarker for predicting a favorable response to immunotherapy for patients with LUAD. Collectively, our study extends the expression profile and potential regulatory pathways of SFTPA1 and may provide a potential biomarker for establishing novel preventive and therapeutic strategies for lung adenocarcinoma.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A536-A536
Author(s):  
Juan Dong ◽  
Cassandra Gilmore ◽  
Hieu Ta ◽  
Keman Zhang ◽  
Sarah Stone ◽  
...  

BackgroundV-domain immunoglobulin suppressor of T cell activation (VISTA) is a B7 family inhibitory immune checkpoint protein and is highly expressed on myeloid cells and T cells.1 VISTA acts as both an inhibitory ligand when expressed on antigen-presenting cells and a receptor when expressed on T cells. Our recent study has shown that VISTA is a myeloid cell-specific immune checkpoint and that blocking VISTA can reprogram suppressive myeloid cells and promote a T cell-stimulatory tumor microenvironment.2 In this study, we further demonstrate that VISTA blockade directly alters the differentiation and the suppressive function of myeloid-derived suppressor cells (MDSC).MethodsFlow cytometry was performed to examine VISTA expression on MDSCs in multiple murine tumor models including the B16BL6 melanoma model, MC38 colon cancer model, and the KPC pancreatic cancer models. To examine the role of VISTA in controlling the differentiation and suppressive function of MDSCs, we cultured wild type (WT) and VISTA.KO bone marrow progenitor cells with GM-CSF and IL-6 to induce BM -derived MDSCs.ResultsOur preliminary results show that VISTA is highly expressed on M-MDSCs in B16BL6, MC38 and KPC tumors. In BM-derived MDSCs, VISTA deletion significantly altered the signaling pathways and the differentiation of MDSCs. Multiple inflammatory signaling pathways were downregulated in VISTA KO MDSCs, resulting in decreased production of cytokines such as IL1 and chemokines such as CCL2/4/9, as well as significantly impaired their ability to suppress the activation of CD8+ T cells. The loss of suppressive function in VISTA KO MDSCs is correlated with significantly reduced expression of iNOS. To validate the results from BM-MDSCs, we sorted CD11b+CD11c-Ly6C+Ly6G- M-MDSCs and CD11b+CD11c-Ly6G+ G-MDSCs from B16BL6 tumor tissues and tested the ability of a VISTA-blocking mAb to reverse the suppressive effects of tumor-derived MDSCs. Our results show that blocking VISTA impaired the suppressive function of tumor-derived M-MDSC but not G-MDSCs.ConclusionsTaken together, these results demonstrate a crucial role of VISTA in regulating the differentiation and function of MDSCs, and that blocking VISTA abolishes MDSC-mediated T cell suppression, thereby boosting.Ethics ApprovalAll in vivo studies were reviewed and approved by Institutional Animal Care and Use Committee (Approval number 2019-2142).ReferencesXu W, Hire T, Malarkannan, S. et al. The structure, expression, and multifaceted role of immune-checkpoint protein VISTA as a critical regulator of anti-tumor immunity, autoimmunity, and inflammation. Cell Mol Immunol 2018;15:438–446.Xu W, Dong J, Zheng Y, et al. Immune-checkpoint protein VISTA regulates antitumor immunity by controlling myeloid cell-mediated inflammation and immunosuppression. Cancer Immunol Res 2019;7:1497–510.


2020 ◽  
Author(s):  
Yi Yang ◽  
Zhenshuang Wang ◽  
Shengrong Long ◽  
Jinhai Huang ◽  
Chengran Xu ◽  
...  

Abstract Background: Gliomas are characterised by easy invasion of surrounding tissues, high mortality and poor prognosis. Moreover, with the increase of grade, the prognosis of glioma is increasingly poor and not optimistic. Therefore, biological markers for glioma are needed in clinical work, which can be utilized to detect and evaluate the situation and prognosis of glioma patients. Many studies have found that the protein arginine methyltransferase 6 (PRMT6) expression is elevated in various tumors and is associated with patient prognosis. However, the role of PRMT6 in glioma has not been reported or analyzed. Methods: In this study, we used a variety of tumor related databases to analyze the mechanism of PRMT6 in tumors, especially gliomas, from the perspective of bioinformatics, and carried out relevant experimental verification with tumor tissues extracted from patients during surgery. In addition, we analyzed the relationship between PRMT6 expression and immune infiltration and immune-related cells, and discussed the possible mechanisms. We also discussed the role of PRMT6 expression in glioma from the perspectives of mutation, clinical indicators, enrichment analysis, and immunohistochemical results. Results: PRMT6 is significantly differentially expressed in a variety of tumors and is associated with survival and prognosis. Especially in gliomas, the expression of PRMT6 gradually increased with the increase of grade. In addition, PRMT6 can be used as an independent prognostic risk factor in the nomogram and has been verified in a variety of databases. Conclusions: Our results indicate that high expression of PRMT6 is a potential biomarker for predicting glioma prognosis and progression.


2021 ◽  
Vol 28 ◽  
Author(s):  
Xinjie Lu

Background: T-cell immunoglobulin (Ig)-domain and mucin-domain (TIM) proteins represent a family of receptors expressed on T-cells that play essential cellular immunity roles. The TIM proteins span across the membrane belonging to type I transmembrane proteins. The N terminus contains an Ig-like V-type domain and a Ser/Thr-rich mucin stalk as a co-inhibitory receptor. The C-terminal tail oriented toward the cytosol predominantly mediates intracellular signaling. Methods: This review discusses the structural features and functions of TIM-3, specifically on its role in mediating immune responses in different cell types, and the rationale for TIM-3-targeted cancer immunotherapy. Results: TIM-3 has gained significant importance to be a potential biomarker in cancer immunotherapy. It has been shown that blockade with checkpoint inhibitors promotes anti-tumor immunity and inhibits tumor growth in several preclinical tumor models. Conclusion: TIM-3 is an immune regulating molecule expressed on several cell types, including IFNγ-producing T-cells, FoxP3+ Treg cells, and innate immune cells. The roles of TIM-3 in immunosuppression support its merit as a target for cancer immunotherapy.


2019 ◽  
Vol 84 (7) ◽  
pp. 695-710 ◽  
Author(s):  
P. M. Gershovich ◽  
A. V. Karabelskii ◽  
A. B. Ulitin ◽  
R. A. Ivanov

Sign in / Sign up

Export Citation Format

Share Document