scholarly journals Practical Approach to Triple-Negative Breast Cancer

2017 ◽  
Vol 13 (5) ◽  
pp. 293-300 ◽  
Author(s):  
Vijayakrishna K. Gadi ◽  
Nancy E. Davidson

Triple negative is a term applied to breast cancers that do not meaningfully express the estrogen or progesterone hormone receptors or overexpress the human epidermal growth factor receptor 2 tyrosine kinase. At present, the only proven method for systemic management of triple-negative breast cancer for both early-stage and metastatic settings is cytotoxic chemotherapy. Here, we provide a comprehensive review of management strategies that are best supported by available data. We also review recent advances most likely to affect treatment of triple-negative breast cancer in the coming years with particular emphasis on targeted agents, biologics, and immunotherapy.

2019 ◽  
Author(s):  
Diane M. Radford ◽  
Jame Abraham ◽  
Stephen R. Grobmyer

Triple-negative breast cancers (TNBCs), negative for estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2, account for 15 to 20% of all female breast cancers. TNBC is heterogeneous based on gene expression microarray, and identification of TNBC subtypes and their behavior has the potential to enable more targeted, neoadjuvant, and adjuvant interventions. TNBCs usually are higher grade (Nottingham score 3) and are more common in younger, Hispanic, and African American women. They are more aggressive, have an increased likelihood of distant disease and mortality, are larger at presentation, and are more likely to be associated with lymph node metastases. Patients with TNBC are at a higher risk for visceral metastases early in the course of the disease. Genetic risk evaluation is recommended for patients with TNBC diagnosed at or before 60 years of age. Surgical management may be influenced by gene testing results. Standard adjuvant chemotherapy is anthracycline or taxane based. This review contains 5 figures, 8 tables, and 51 references. Key Words: adjuvant, BRCA, chemotherapy, hormone receptor negative, neoadjuvant, genetics, triple-negative breast cancer, breast neoplasm.


2019 ◽  
Author(s):  
Diane M. Radford ◽  
Jame Abraham ◽  
Stephen R. Grobmyer

Triple-negative breast cancers (TNBCs), negative for estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2, account for 15 to 20% of all female breast cancers. TNBC is heterogeneous based on gene expression microarray, and identification of TNBC subtypes and their behavior has the potential to enable more targeted, neoadjuvant, and adjuvant interventions. TNBCs usually are higher grade (Nottingham score 3) and are more common in younger, Hispanic, and African American women. They are more aggressive, have an increased likelihood of distant disease and mortality, are larger at presentation, and are more likely to be associated with lymph node metastases. Patients with TNBC are at a higher risk for visceral metastases early in the course of the disease. Genetic risk evaluation is recommended for patients with TNBC diagnosed at or before 60 years of age. Surgical management may be influenced by gene testing results. Standard adjuvant chemotherapy is anthracycline or taxane based. This review contains 5 figures, 8 tables, and 51 references. Key Words: adjuvant, BRCA, chemotherapy, hormone receptor negative, neoadjuvant, genetics, triple-negative breast cancer, breast neoplasm.


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Ayca Gucalp ◽  
Tiffany A. Traina

Triple-negative breast cancer (TNBC), a subtype distinguished by negative immunohistochemical assays for expression of the estrogen and progesterone receptors (ER/PR) and human epidermal growth factor receptor-2(HER2) represents 15% of all breast cancers. Patients with TNBC generally experience a more aggressive clinical course with increased risk of disease progression and poorer overall survival. Furthermore, this subtype accounts for a disproportionate number of disease-related mortality in part due to its aggressive natural history and our lack of effective targeted agents beyond conventional cytotoxic chemotherapy. In this paper, we will review the epidemiology, risk factors, prognosis, and the molecular and clinicopathologic features that distinguish TNBC from other subtypes of breast cancer. In addition, we will examine the available data for the use of cytotoxic chemotherapy in the treatment of TNBC in both the neoadjuvant and adjuvant setting and explore the ongoing development of newer targeted agents.


Plasma ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 218-228 ◽  
Author(s):  
Xiaoqian Cheng ◽  
Warren Rowe ◽  
Lawan Ly ◽  
Alexey Shashurin ◽  
Taisen Zhuang ◽  
...  

Triple-negative breast cancer is a phenotype of breast cancer where the expression level of estrogen, progesterone and human epidermal growth factor receptor 2 (HER2) receptors are low or absent. It is more frequently diagnosed in younger and premenopausal women, among which African and Hispanic have a higher rate. Cold atmospheric plasma has revealed its promising ant-cancer capacity over the past two decades. In this study, we report the first cold plasma jet delivered by the Canady Cold Plasma Conversion Unit and characterization of its electric and thermal parameters. The unit effectively reduced the viability of triple-negative breast cancer up to 80% without thermal damage, providing a starting point for future clinical trials.


Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 5009
Author(s):  
Swetha Vasudevan ◽  
Ibukun A. Adejumobi ◽  
Heba Alkhatib ◽  
Sangita Roy Chowdhury ◽  
Shira Stefansky ◽  
...  

Triple-negative breast cancer (TNBC) is an aggressive subgroup of breast cancers which is treated mainly with chemotherapy and radiotherapy. Epidermal growth factor receptor (EGFR) was considered to be frequently expressed in TNBC, and therefore was suggested as a therapeutic target. However, clinical trials of EGFR inhibitors have failed. In this study, we examine the relationship between the patient-specific TNBC network structures and possible mechanisms of resistance to anti-EGFR therapy. Using an information-theoretical analysis of 747 breast tumors from the TCGA dataset, we resolved individualized protein network structures, namely patient-specific signaling signatures (PaSSS) for each tumor. Each PaSSS was characterized by a set of 1–4 altered protein–protein subnetworks. Thirty-one percent of TNBC PaSSSs were found to harbor EGFR as a part of the network and were predicted to benefit from anti-EGFR therapy as long as it is combined with anti-estrogen receptor (ER) therapy. Using a series of single-cell experiments, followed by in vivo support, we show that drug combinations which are not tailored accurately to each PaSSS may generate evolutionary pressure in malignancies leading to an expansion of the previously undetected or untargeted subpopulations, such as ER+ populations. This corresponds to the PaSSS-based predictions suggesting to incorporate anti-ER drugs in certain anti-TNBC treatments. These findings highlight the need to tailor anti-TNBC targeted therapy to each PaSSS to prevent diverse evolutions of TNBC tumors and drug resistance development.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 4139
Author(s):  
Pere Llinàs-Arias ◽  
Sandra Íñiguez-Muñoz ◽  
Kelly McCann ◽  
Leonie Voorwerk ◽  
Javier I. J. Orozco ◽  
...  

Triple-negative breast cancer (TNBC) is defined by the absence of estrogen receptor and progesterone receptor and human epidermal growth factor receptor 2 (HER2) overexpression. This malignancy, representing 15–20% of breast cancers, is a clinical challenge due to the lack of targeted treatments, higher intrinsic aggressiveness, and worse outcomes than other breast cancer subtypes. Immune checkpoint inhibitors have shown promising efficacy for early-stage and advanced TNBC, but this seems limited to a subgroup of patients. Understanding the underlying mechanisms that determine immunotherapy efficiency is essential to identifying which TNBC patients will respond to immunotherapy-based treatments and help to develop new therapeutic strategies. Emerging evidence supports that epigenetic alterations, including aberrant chromatin architecture conformation and the modulation of gene regulatory elements, are critical mechanisms for immune escape. These alterations are particularly interesting since they can be reverted through the inhibition of epigenetic regulators. For that reason, several recent studies suggest that the combination of epigenetic drugs and immunotherapeutic agents can boost anticancer immune responses. In this review, we focused on the contribution of epigenetics to the crosstalk between immune and cancer cells, its relevance on immunotherapy response in TNBC, and the potential benefits of combined treatments.


Medicina ◽  
2021 ◽  
Vol 57 (8) ◽  
pp. 837
Author(s):  
So-Woon Kim ◽  
Jinah Chu ◽  
Sung-Im Do ◽  
Kiyong Na

Background and Objectives: Kidney and brain protein (KIBRA) is a protein encoded by the WW and C2 domain containing 1 (WWC1) gene and is involved in the Hippo signaling pathway. Recent studies have revealed the prognostic value of KIBRA expression; however, its role in breast cancer remains unclear. The aim of this study was to examine KIBRA expression in relation to the clinical and pathological characteristics of patients with breast cancer and to disease outcomes. Materials and Methods: We analyzed the expression of KIBRA and its correlation with event-free survival (EFS) outcomes in resected samples from 486 patients with breast cancer. Results: KIBRA expression was significantly different among the molecular subgroups (low KIBRA expression: luminal A, 46.7% versus 50.0%, p = 0.641; luminal B, 32.7% versus 71.7%, p < 0.001; human epidermal growth factor receptor 2 (HER2)-enriched, 64.9% versus 45.5%. p = 0.001; triple-negative, 73.6% versus 43.8%, p < 0.001). Low KIBRA expression was also associated with high nuclear grade (60.4% versus 37.8%, p < 0.001), high histologic grade (58.7% versus 37.0%, p < 0.001), and estrogen receptor (ER) negativity (54.2% versus 23.6%, p < 0.001). Low KIBRA expression was significantly associated with poor EFS (p = 0.041; hazard ratio (HR) 1.658; 95% confidence interval (CI), 1.015–2.709). Low KIBRA expression was an independent indicator of poor prognosis (p = 0.001; HR = 3.952; 95% CI = 1.542–10.133) in triple-negative breast cancer (TNBC). Conclusion: Low KIBRA expression was associated with higher histological grade, ER negativity and poor EFS of breast cancer. In particular, our data highlight KIBRA expression status as a potential prognostic marker for TNBC.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Karima Oualla ◽  
Loay Kassem ◽  
Lamiae Nouiakh ◽  
Lamiae Amaadour ◽  
Zineb Benbrahim ◽  
...  

Triple-negative breast cancer (TNBC) is characterized by the absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). It accounts for 15%–20% of all breast cancers and is associated with an aggressive evolution and poor outcomes with the majority of recurrences and deaths occurring in the first 5 years. Chemotherapy remains the mainstay of treatment in the absence of effective targets, but the good understanding of immune tumor microenvironment, the identification of immune-related targets, and the role of tumor-infiltrating lymphocytes (TILs) in TNBC has allowed to develop promising immunotherapeutic strategies for this unique subset of breast cancer. Recently, immunotherapy is being extensively explored in TNBC and clinical trials have shown promising results. In this article, we tried to explain the rationale and mechanisms of targeting the immune system in TNBC, to report the results from recent clinical trials that put immunotherapy as a new standard of care in TNBC in addition to ongoing trials and future directions in the next decade.


Sign in / Sign up

Export Citation Format

Share Document