On Inverse Problems for the Wave Equation with Time Dependent Potentials

Author(s):  
G.F. Roach
2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Tony Liimatainen ◽  
Lauri Oksanen

<p style='text-indent:20px;'>We construct counterexamples to inverse problems for the wave operator on domains in <inline-formula><tex-math id="M1">\begin{document}$ \mathbb{R}^{n+1} $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M2">\begin{document}$ n \ge 2 $\end{document}</tex-math></inline-formula>, and on Lorentzian manifolds. We show that non-isometric Lorentzian metrics can lead to same partial data measurements, which are formulated in terms certain restrictions of the Dirichlet-to-Neumann map. The Lorentzian metrics giving counterexamples are time-dependent, but they are smooth and non-degenerate. On <inline-formula><tex-math id="M3">\begin{document}$ \mathbb{R}^{n+1} $\end{document}</tex-math></inline-formula> the metrics are conformal to the Minkowski metric.</p>


2021 ◽  
Vol 497 (2) ◽  
pp. 124910
Author(s):  
Ibtissem Ben Aïcha ◽  
Guang-Hui Hu ◽  
Manmohan Vashisth ◽  
Jun Zou

Wave Motion ◽  
2014 ◽  
Vol 51 (1) ◽  
pp. 168-192 ◽  
Author(s):  
Silvia Falletta ◽  
Giovanni Monegato

2015 ◽  
Vol 31 (10) ◽  
pp. 105011 ◽  
Author(s):  
Kamal Rashedi ◽  
Mourad Sini

Sign in / Sign up

Export Citation Format

Share Document