Organic matter transformations in the bathyal seastars Bathyhiaster vexillifer andPlutonaster bifrons

2020 ◽  
pp. 278-278
Author(s):  
C. Bishop ◽  
P.A. Tyler ◽  
M. Varney ◽  
J.D. Gage
Keyword(s):  
Nature ◽  
2003 ◽  
Author(s):  
Philip Ball
Keyword(s):  

Agronomie ◽  
2002 ◽  
Vol 22 (7-8) ◽  
pp. 777-787 ◽  
Author(s):  
Graeme D. Schwenke ◽  
Warwick L. Felton ◽  
David F. Herridge ◽  
Dil F. Khan ◽  
Mark B. Peoples

EDIS ◽  
2013 ◽  
Vol 2013 (11) ◽  
Author(s):  
Michael A. Davis ◽  
Doug R. Sloan ◽  
Gerald Kidder ◽  
R. D. Jacobs

Animal manures have been used as natural crop fertilizers for centuries. Because of poultry manure’s high nitrogen content, it has long been recognized as one of the most desirable manures. Besides fertilizing crops, manures also supply other essential plant nutrients and serve as a soil amendment by adding organic matter, which helps improve the soil’s moisture and nutrient retention. Organic matter persistence will vary with temperature, drainage, rainfall, and other environmental factors. This 2-page fact sheet was written by Michael A. Davis, D.R. Sloan, Gerald Kidder, and R.D. Jacobs, and published by the UF Department of Animal Science, November 2013. http://edis.ifas.ufl.edu/aa205


Author(s):  
Andrey ilinsky ◽  
Alexander Nefedov ◽  
Konstantin Evsenkin

Global climatic changes, technogenic pollution by pollutants, violations of technologies of exploitation of reclaimed land lead to a decrease in fertility and soil degradation of agricultural land. Adverse weather conditions, resulting in a lack of adequate flood water, and economic difficulties in agriculture make it difficult to fill the deficit of organic matter and macronutrients in reclaimed alluvial soils. The monitoring of agrochemical properties of alluvial meadow medium-loamy soil of the stationary site (reclaimed lands of JSC «Moskovskoye» of Ryazan region), located in the floodplain of the Oka river, conducted by the Meshchersky branch of Vniigim, showed the presence and intensification of degradation changes in the soil. Thus, comparing the agrochemical indicators in the layer 0–20 cm, carried out in 1995, with the indicators of 2019, it should be noted a decrease in soil fertility. The decrease in soil quality was expressed in a decrease in the amount of mobile phosphorus by 37.6 %, mobile potassium by 53.3 %. Also, during this time there was a decrease in organic matter by 9.1 %, and an increase in soil acidity was 0.6 pH. As a result of such changes, soils lose ecological stability and become more vulnerable to adverse weather and negative anthropogenic impacts. In such a situation, advanced agricultural techniques should be actively used to obtain guaranteed, environmentally safe crop yields and restore the fertility of degraded reclaimed soils. In this regard, there is a need to develop innovative methods of fertility restoration of degraded alluvial soils in reclaimed lands using multi-component organic-mineral ameliorants. Meshchersky branch performs research work in addressing this issue.


2020 ◽  
Vol 644 ◽  
pp. 91-103
Author(s):  
D Bearham ◽  
MA Vanderklift ◽  
RA Downie ◽  
DP Thomson ◽  
LA Clementson

Benthic suspension feeders, such as bivalves, potentially have several different food sources, including plankton and resuspended detritus of benthic origin. We hypothesised that suspension feeders are likely to feed on detritus if it is present. This inference would be further strengthened if there was a correlation between δ13C of suspension feeder tissue and δ13C of particulate organic matter (POM). Since detritus is characterised by high particulate organic matter (POC):chl a ratios, we would also predict a positive correlation between POM δ13C and POC:chl a. We hypothesised that increasing depth and greater distance from shore would produce a greater nutritional reliance by experimentally transplanted blue mussels Mytilus edulis on plankton rather than macrophyte-derived detritus. After deployments of 3 mo duration in 2 different years at depths from 3 to 40 m, M. edulis sizes were positively correlated with POM concentrations. POC:chl a ratios and δ13C of POM and M. edulis gill tissue decreased with increasing depth (and greater distance from shore). δ13C of POM was correlated with δ13C of M. edulis. Our results suggest that detritus comprised a large proportion of POM at shallow depths (<15 m), that M. edulis ingested and assimilated carbon in proportion to its availability in POM, and that growth of M. edulis was higher where detritus was present and POM concentrations were higher.


Sign in / Sign up

Export Citation Format

Share Document