Bayesian Model Averaging in Causal Inference

2021 ◽  
pp. 201-226
Author(s):  
Joseph Antonelli ◽  
Francesca Dominici
Author(s):  
Lorenzo Bencivelli ◽  
Massimiliano Giuseppe Marcellino ◽  
Gianluca Moretti

Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1098
Author(s):  
Ewelina Łukaszyk ◽  
Katarzyna Bień-Barkowska ◽  
Barbara Bień

Identifying factors that affect mortality requires a robust statistical approach. This study’s objective is to assess an optimal set of variables that are independently associated with the mortality risk of 433 older comorbid adults that have been discharged from the geriatric ward. We used both the stepwise backward variable selection and the iterative Bayesian model averaging (BMA) approaches to the Cox proportional hazards models. Potential predictors of the mortality rate were based on a broad range of clinical data; functional and laboratory tests, including geriatric nutritional risk index (GNRI); lymphocyte count; vitamin D, and the age-weighted Charlson comorbidity index. The results of the multivariable analysis identified seven explanatory variables that are independently associated with the length of survival. The mortality rate was higher in males than in females; it increased with the comorbidity level and C-reactive proteins plasma level but was negatively affected by a person’s mobility, GNRI and lymphocyte count, as well as the vitamin D plasma level.


2015 ◽  
Vol 57 (3) ◽  
pp. 485-493 ◽  
Author(s):  
Yutaka Osada ◽  
Takeo Kuriyama ◽  
Masahiko Asada ◽  
Hiroyuki Yokomizo ◽  
Tadashi Miyashita

Sign in / Sign up

Export Citation Format

Share Document