Establishment of evaluation method of floor vibration caused by human motion and presentation of criterion on actual house floor

2021 ◽  
pp. 575-584
Author(s):  
Y. Yokoyama ◽  
H. Ono
2017 ◽  
Vol 17 (07) ◽  
pp. 1740042
Author(s):  
YANG LIU ◽  
YONGSHENG GAO ◽  
YANHE ZHU

Wearable lower limb exoskeleton has comprehensive applications such as load-carrying augmentation, walking assistance, and rehabilitation training by using many active actuators in the joints to reduce the metabolic cost generally. The traditional fully actuated exoskeleton is bulky and requires large energy consumption, and the passive exoskeleton is difficult to provide effective power assistance. To achieve both small number of actuators and good assisting performance, this paper proposes a cable-pulley underactuated principle-based lower limb exoskeleton. The exoskeleton dynamics was modeled and the human-exoskeleton hybrid model was analyzed via ADAMS and LifeMOD to provide an evaluation method for power assistance. By exploiting the control strategy and utilizing the synergies of torque and power assistance, the hip joint and the knee joint can be actuated by a single cable simultaneously. Moreover, the human-exoskeleton co-simulation method was utilized to verify the assisting performance and control effect. In this simulation, the upper toque peak and power required by human are obviously reduced by power assistance and the joint angle curves without exoskeleton are in accordance with the joint angle curves with exoskeleton almost. In conclusion, the designed exoskeleton is compatible with human motion and feasible to provide effective power assistance in load-carrying walking.


2021 ◽  
Vol 11 (17) ◽  
pp. 8229
Author(s):  
Katarzyna Grzesiak-Kopeć ◽  
Barbara Strug ◽  
Grażyna Ślusarczyk

In this paper, an evolutionary technique is proposed as a method for generating new design solutions for the floor layout problem. The genotypes are represented by the vectors of numerical values of points representing endpoints of room walls. Equivalents of genetic operators for such a representation are proposed. A case study of the design problem of one-story houses is presented from the initial requirements to the best solutions. An evaluation method using requirement-weighted fitness function for evolved plans is also proposed. The obtained results as well as the advantages and issues related to such an approach are also discussed.


Author(s):  
Haijin Pan

Due to the lack of more precise and complete data support, the reliability of posture stability evaluation method based on common technology is poor. In the face of such problems, the application of multi-body system coupling dynamic model in the evaluation of sports posture stability is proposed. The coupling dynamic model of human motion posture is established, and the relevant data of human motion posture is collected. The complete data of human motion posture is obtained by solving the dynamic model. Choose the appropriate stability evaluation index, calculate the stability evaluation index, divide the stability level, and realize the evaluation of posture stability. The experimental results show that: the application of multi-body system coupling dynamic model in the stability evaluation method makes the time delay and data error of the evaluation method small, and its overall reliability is improved.


Author(s):  
Masataka Sato ◽  
Tomoyuki Shimono ◽  
Hiroaki Kuwahara ◽  
Yusuke Kasahara ◽  
Kouhei Ohnishi

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Chen Chen

Traditional aerobics training methods have the problems of lack of auxiliary teaching conditions and low-training efficiency. With the in-depth application of artificial intelligence and computer-aided training methods in the field of aerobics teaching and practice, this paper proposes a local space-time preserving Fisher vector (FV) coding method and monocular motion video automatic scoring technology. Firstly, the gradient direction histogram and optical flow histogram are extracted to describe the motion posture and motion characteristics of the human body in motion video. After normalization and data dimensionality reduction based on the principal component analysis, the human motion feature vector with discrimination ability is obtained. Then, the spatiotemporal pyramid method is used to embed spatiotemporal features in FV coding to improve the ability to identify the correctness and coordination of human behavior. Finally, the linear model of different action classifications is established to determine the action score. In the key frame extraction experiment of the aerobics action video, the ST-FMP model improves the recognition accuracy of uncertain human parts in the flexible hybrid joint human model by about 15 percentage points, and the key frame extraction accuracy reaches 81%, which is better than the traditional algorithm. This algorithm is not only sensitive to human motion characteristics and human posture but also suitable for sports video annotation evaluation, which has a certain reference significance for improving the level of aerobics training.


Author(s):  
T. Oikawa ◽  
H. Kosugi ◽  
F. Hosokawa ◽  
D. Shindo ◽  
M. Kersker

Evaluation of the resolution of the Imaging Plate (IP) has been attempted by some methods. An evaluation method for IP resolution, which is not influenced by hard X-rays at higher accelerating voltages, was proposed previously by the present authors. This method, however, requires truoblesome experimental preperations partly because specially synthesized hematite was used as a specimen, and partly because a special shape of the specimen was used as a standard image. In this paper, a convenient evaluation method which is not infuenced by the specimen shape and image direction, is newly proposed. In this method, phase contrast images of thin amorphous film are used.Several diffraction rings are obtained by the Fourier transformation of a phase contrast image of thin amorphous film, taken at a large under focus. The rings show the spatial-frequency spectrum corresponding to the phase contrast transfer function (PCTF). The envelope function is obtained by connecting the peak intensities of the rings. The evelope function is offten used for evaluation of the instrument, because the function shows the performance of the electron microscope (EM).


Sign in / Sign up

Export Citation Format

Share Document