scholarly journals Exploring the utility and effectiveness of tidal stream energy resource assessment and characterisation standards: A case study

Author(s):  
V Ramos ◽  
R Carballo ◽  
John Ringwood
2013 ◽  
Vol 3-4 ◽  
pp. e98-e111 ◽  
Author(s):  
Sena Serhadlıoğlu ◽  
Thomas A.A. Adcock ◽  
Guy T. Houlsby ◽  
Scott Draper ◽  
Alistair G.L. Borthwick

2015 ◽  
Vol 42 (13) ◽  
pp. 5452-5459 ◽  
Author(s):  
Lonneke Goddijn-Murphy ◽  
Belén Martín Míguez ◽  
Jason McIlvenny ◽  
Philippe Gleizon

Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4151 ◽  
Author(s):  
Lilia Flores Mateos ◽  
Michael Hartnett

A novel method for modelling tidal-stream energy capture at the regional scale is used to evaluate the performance of two marine turbine arrays configured as a fence and a partial fence. These configurations were used to study bounded and unbounded flow scenarios, respectively. The method implemented uses turbine operating conditions (TOC) and the parametrisation of changes produced by power extraction within the turbine near-field to compute a non-constant thrust coefficient, and it is referred to as a momentum sink TOC. Additionally, the effects of using a shock-capture capability to evaluate the resource are studied by comparing the performance of a gradually varying flow (GVF) and a rapidly varying flow (RVF) solver. Tidal-stream energy assessment of bounded flow scenarios through a full fence configuration is better performed using a GVF solver, because the head drop is more accurately simulated; however, the solver underestimates velocity reductions due to power extraction. On the other hand, assessment of unbounded flow scenarios through a partial fence was better performed by the RVF solver. This scheme approximated the head drop and velocity reduction more accurately, thus suggesting that resource assessment with realistic turbine configurations requires the correct solution of the discontinuities produced in the tidal-stream by power extraction.


Author(s):  
Angela Vazquez ◽  
Gregorio Iglesias

Potential areas for tidal stream energy development are conventionally selected on the basis of resource assessments. For all the importance of the resource, there are other elements (technological, economic, spatial, etc.) that must be taken into account in this selection. The objective of the present work is to develop a new methodology to select tidal stream hotspots accounting for all these relevant elements, and to apply it to a case study, showing in the process how the potential for tidal energy development can be fundamentally altered by technological, economic and spatial constraints. The case study is conducted in the Bristol Channel and Severn Estuary (UK), one of the regions with the largest tidal resource in the world. First, the most energetic areas are identified by means of a hydrodynamics model, calibrated and validated with field data. Second, the method calculates the energy that can be harnessed in these areas by means of a geospatial Matlab-based program designed ad hoc, and on the basis of the power curve and dimensions of a specific tidal turbine. Third, the spatial distribution of the levelised cost of energy (LCOE) is calculated, and a number of locations are selected as potential tidal sites. The fourth element in the approach is the consideration of restrictions due to overlap with other marine uses, such as shipping. As a result, potential conflict-free areas for tidal stream energy exploitation at an economical cost are identified. Thus, the case study illustrates this holistic approach to selecting tidal stream sites and the importance of elements other than the resource, which – for all its relevance – is shown to not guarantee by itself the potential for tidal stream energy development.


2016 ◽  
Vol 180 ◽  
pp. 402-415 ◽  
Author(s):  
Nicolas Guillou ◽  
Georges Chapalain ◽  
Simon P. Neill

2020 ◽  
Author(s):  
Matt Lewis ◽  
John Maskell ◽  
Daniel Coles ◽  
Michael Ridgill ◽  
Simon Neill

<p>Tidal-stream energy research has often focused on the applicability of the resource to large electricity distribution networks, or reducing costs so it can compete with other renewables (such as offshore wind). Here we explore how tidal electricity may be worth the additional cost, as the quality and predictability of the electricity could be advantageous – especially to remote “off-grid” communities and industry.</p><p>The regular motion from astronomical forces allows the tide to be predicted far into the future, and therefore idealised scenarios of phasing tidal electricity supply to demand can be explored. A normalised tidal-stream turbine power curve, developed from published data on 15 devices, was developed. Tidal harmonics of a region, based on ocean model output, were used in conjunction with this normalised tidal-stream power curve, and predictions of yield and the timing of electricity supply were made. Such analysis allows the type and number of turbines needed for a specific community requirement, as well as a resource-led tidal turbine optimisation for a region. For example, with a simple M2 tide (12.42hour period) of 2m/s peak flow, which represents mean flow conditions, a rated turbine speed of 1.8m/s gives the highest yield-density of all likely turbine configurations (i.e. calculated from power density and so ignores turbine diameter), and with a 41% Capacity Factor. Furthermore, as tidal current and power predictions can be made, we explore the battery size needed for a given electricity demand timeseries (e.g. baseload, or offshore aquaculture). Our analysis finds tidal-stream energy could be much more useful than other forms of renewable energy to off-grid communities due to the predictability and persistence of the electricity supply. Moreover, our standardised power curve method will facilitate technical tidal energy resource assessment for any region.</p>


Sign in / Sign up

Export Citation Format

Share Document