Genetics of Phytic Acid Synthesis and Accumulation

Author(s):  
Victor Raboy ◽  
Kevin Young ◽  
Steven Larson ◽  
Allen Cook
Keyword(s):  
1993 ◽  
Vol 292 (3) ◽  
pp. 805-811 ◽  
Author(s):  
P L Lakin-Thomas

An inositol-requiring strain of Neurospora crassa was labelled during growth in liquid medium with [3H]inositol, and the levels of inositol phosphates and phosphoinositides were determined under inositol-sufficient and inositol-starved conditions. Because the mutant has an absolute requirement for inositol, the total mass of inositol-containing compounds could be determined. Inositol-containing lipids were identified by deacylation and co-migration with standards on h.p.l.c.; PtdIns3P, PtdIns4P, and PtdIns(4,5)P2 were found in approximately equal amounts, in addition to large amounts of PtdIns. Inositol starvation decreased the level of PtdIns to 10% of the sufficient level, and decreased the levels of the other phosphoinositides to about 25%. A number of inositol phosphates were found, including several InsP3s, InsP4s and InsP5s and phytic acid. Ins(1,4,5)P3 was identified by co-migration with standards on h.p.l.c. and by digestion with inositol phosphomonoesterase. High concentrations of all inositol phosphates were found in the extracellular medium in inositol-starved cultures. Inositol starvation on both liquid and solid agar media decreased the intracellular levels of some inositol phosphates, but increased the levels of phytic acid and several other inositol phosphates which may be its precursors and/or breakdown products. These results may indicate that inositol starvation induces phytic acid synthesis as a protection against the free-radical production and lipid peroxidation characteristic of inositol-less death.


2019 ◽  
Vol 35 (4) ◽  
pp. 497-506 ◽  
Author(s):  
YINCHUN FANG ◽  
◽  
XINHUA LIU ◽  
XIAO WU ◽  
XUCHEN TAO ◽  
...  
Keyword(s):  

2020 ◽  
Vol 85 ◽  
pp. 47-58
Author(s):  
Y Jiang ◽  
Y Liu

Various studies have observed that increased nutrient supply promotes the growth of bloom-forming cyanobacteria, but only a limited number of studies have investigated the influence of increased nutrient supply on bloom-forming cyanobacteria at the proteomic level. We investigated the cellular and proteomic responses of Microcystis aeruginosa to elevated nitrogen and phosphorus supply. Increased supply of both nutrients significantly promoted the growth of M. aeruginosa and the synthesis of chlorophyll a, protein, and microcystins. The release of microcystins and the synthesis of polysaccharides negatively correlated with the growth of M. aeruginosa under high nutrient levels. Overexpressed proteins related to photosynthesis, and amino acid synthesis, were responsible for the stimulatory effects of increased nutrient supply in M. aeruginosa. Increased nitrogen supply directly promoted cyanobacterial growth by inducing the overexpression of the cell division regulatory protein FtsZ. NtcA, that regulates gene transcription related to both nitrogen assimilation and microcystin synthesis, was overexpressed under the high nitrogen condition, which consequently induced overexpression of 2 microcystin synthetases (McyC and McyF) and promoted microcystin synthesis. Elevated nitrogen supply induced the overexpression of proteins involved in gas vesicle organization (GvpC and GvpW), which may increase the buoyancy of M. aeruginosa. Increased phosphorus level indirectly affected growth and the synthesis of cellular substances in M. aeruginosa through the mediation of differentially expressed proteins related to carbon and phosphorus metabolism. This study provides a comprehensive description of changes in the proteome of M. aeruginosa in response to an increased supply of 2 key nutrients.


2014 ◽  
Vol 27 (1) ◽  
pp. 128-142
Author(s):  
Ali A. Sahi ◽  
Ali H. Abdul-Kareem ◽  
Basim A. Jaber

Sign in / Sign up

Export Citation Format

Share Document