New Frequency Domain PID Controller Design Method

2000 ◽  
pp. 145-184
2017 ◽  
Vol 50 (1) ◽  
pp. 8555-8560
Author(s):  
Emmanuel Edet ◽  
Reza Katebi

Author(s):  
Zhizheng Wu ◽  
Azhar Iqbal ◽  
Foued Ben Amara

In this paper, a decentralized robust PID controller design method is proposed for multi-input multi-output systems. The system model is first decoupled in the low frequency range, and only the diagonal entries in the DC-decoupled plant model are retained. To deal with the resulting unmodeled high frequency dynamics, a decentralized robust PID controller design method is proposed, where the robust stability and transient response performance of the resulting closed loop system are formulated as a multi-objective H∞/H2 static output feedback problem. The desired parameters of the PID controller are determined by solving a static output feedback problem using linear matrix inequalities (LMIs). Finally, the performance of the proposed control algorithm is experimentally evaluated on the adaptive optics system involving a prototype magnetic fluid deformable mirror (MFDM). The experimental results illustrate the effectiveness of the proposed control algorithm for the MFDM surface shape tracking in the closed loop adaptive optics system.


2011 ◽  
Vol 201-203 ◽  
pp. 2113-2118 ◽  
Author(s):  
Jium Ming Lin ◽  
Po Kuang Chang

This research is to extend Ziegler-Nichols based PID controller design method to the intelligent fuzzy PID controller design of a Scanning Probe Microscope (SPM) system, thus the relative stability can be reserved. In addition, one can see the hysteresis and parameters variation effects of the force actuator can be reduced. This improvement had been verified by practical implementation. Comparing the results with the design with the Ziegler-Nichols based PID controller, one can see that the proposed system is more robust.


Sign in / Sign up

Export Citation Format

Share Document