Mesenchymal Support Cells in the Assembly of Functional Vessel Networks

2014 ◽  
pp. 56-77
Keyword(s):  
2021 ◽  
pp. 2102661
Author(s):  
Ariel A. Szklanny ◽  
Majd Machour ◽  
Idan Redenski ◽  
Václav Chochola ◽  
Idit Goldfracht ◽  
...  

2017 ◽  
Vol 14 (127) ◽  
pp. 20160992 ◽  
Author(s):  
B. Zeller-Plumhoff ◽  
T. Roose ◽  
G. F. Clough ◽  
P. Schneider

The supply of oxygen in sufficient quantity is vital for the correct functioning of all organs in the human body, in particular for skeletal muscle during exercise. Disease is often associated with both an inhibition of the microvascular supply capability and is thought to relate to changes in the structure of blood vessel networks. Different methods exist to investigate the influence of the microvascular structure on tissue oxygenation, varying over a range of application areas, i.e. biological in vivo and in vitro experiments, imaging and mathematical modelling. Ideally, all of these methods should be combined within the same framework in order to fully understand the processes involved. This review discusses the mathematical models of skeletal muscle oxygenation currently available that are based upon images taken of the muscle microvasculature in vivo and ex vivo . Imaging systems suitable for capturing the blood vessel networks are discussed and respective contrasting methods presented. The review further informs the association between anatomical characteristics in health and disease. With this review we give the reader a tool to understand and establish the workflow of developing an image-based model of skeletal muscle oxygenation. Finally, we give an outlook for improvements needed for measurements and imaging techniques to adequately investigate the microvascular capability for oxygen exchange.


2020 ◽  
Vol 21 (11) ◽  
pp. 3790
Author(s):  
Greg Hutchings ◽  
Krzysztof Janowicz ◽  
Lisa Moncrieff ◽  
Claudia Dompe ◽  
Ewa Strauss ◽  
...  

Neovascularization and angiogenesis are vital processes in the repair of damaged tissue, creating new blood vessel networks and increasing oxygen and nutrient supply for regeneration. The importance of Adipose-derived Mesenchymal Stem Cells (ASCs) contained in the adipose tissue surrounding blood vessel networks to these processes remains unknown and the exact mechanisms responsible for directing adipogenic cell fate remain to be discovered. As adipose tissue contains a heterogenous population of partially differentiated cells of adipocyte lineage; tissue repair, angiogenesis and neovascularization may be closely linked to the function of ASCs in a complex relationship. This review aims to investigate the link between ASCs and angiogenesis/neovascularization, with references to current studies. The molecular mechanisms of these processes, as well as ASC differentiation and proliferation are described in detail. ASCs may differentiate into endothelial cells during neovascularization; however, recent clinical trials have suggested that ASCs may also stimulate angiogenesis and neovascularization indirectly through the release of paracrine factors.


2017 ◽  
Vol 11 (6) ◽  
pp. 883-894 ◽  
Author(s):  
Naomichi Furushiro ◽  
Hideo Yokota ◽  
Sakiko Nakamura ◽  
Kazuhiro Fujisaki ◽  
Yutaka Yamagata ◽  
...  

This study aims to verify whether the three-dimensional internal information acquisition system we have developed can be applied successfully to the microstructures of consecutively precision-machined biological samples, and to those of metallic samples. Therefore, this study mainly deals with biological hard tissue samples like bones. In this paper, we first studied the precision-machining characteristics of bones. From this, we determined that, to obtain machined surfaces sufficient for internal observations, we need to determine the maximum uncut chip thickness and the cutting speeds, taking the bone’s anisotropy into consideration. Next, we acquired three-dimensional internal information on consecutively precision-machined bone samples using the three-dimensional internal acquisition system we developed. Subsequently, we visualized the internal structures of these machined samples. Our tiling observations acquired an 18×9×3 mm segment as a 6.2×6.2×10μm resolution image. We obtained a three-dimensionally reconstructed image of complex blood vessel networks inside the bone by making the acquired images binary.


2020 ◽  
Vol 5 (6) ◽  
pp. 2000103 ◽  
Author(s):  
Yih Yang Chen ◽  
Benjamin R. Kingston ◽  
Warren C. W. Chan

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Inken D. Kelch ◽  
Gib Bogle ◽  
Gregory B. Sands ◽  
Anthony R. J. Phillips ◽  
Ian J. LeGrice ◽  
...  

Abstract Understanding of the microvasculature has previously been limited by the lack of methods capable of capturing and modelling complete vascular networks. We used novel imaging and computational techniques to establish the topology of the entire blood vessel network of a murine lymph node, combining 63706 confocal images at 2 μm pixel resolution to cover a volume of 3.88 mm3. Detailed measurements including the distribution of vessel diameters, branch counts and identification of voids were subsequently re-visualised in 3D revealing regional specialisation within the network. By focussing on critical immune microenvironments we quantified differences in their vascular topology. We further developed a morphology-based approach to identify High Endothelial Venules, key sites for lymphocyte extravasation. These data represent a comprehensive and continuous blood vessel network of an entire organ and provide benchmark measurements that will inform modelling of blood vessel networks as well as enable comparison of vascular topology in different organs.


Sign in / Sign up

Export Citation Format

Share Document