Evaluation of fatigue resistance of asphalt mixes using Four Point Beam Fatigue and Semi-Circular Bend test methods

Author(s):  
M Barman ◽  
R Ghabchi ◽  
D Singh ◽  
M Zaman ◽  
S Commuri ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2434
Author(s):  
Laura Moretti ◽  
Nico Fabrizi ◽  
Nicola Fiore ◽  
Antonio D’Andrea

In recent years, nanotechnology has sparked an interest in nanomodification of bituminous materials to increase the viscosity of asphalt binders and improves the rutting and fatigue resistance of asphalt mixtures. This paper presents the experimental results of laboratory tests on bituminous mixtures laid on a 1052 m-long test section built in Rome, Italy. Four asphalt mixtures for wearing and binder layer were considered: two polymer modified asphalt concretes (the former modified with the additive Superplast and the latter modified with styrene–butadiene–styrene), a “hard” graphene nanoplatelets (GNPs) modified asphalt concrete and a not-modified mixture. The indirect tensile strength, water sensitivity, stiffness modulus, and fatigue resistance of the mixtures were tested and compared. A statistical analysis based on the results has shown that the mixtures with GNPs have higher mechanical performances than the others: GNP could significantly improve the tested mechanical performances; further studies will be carried out to investigate its effect on rutting and skid resistance.


Author(s):  
Soohyok Im ◽  
Fujie Zhou

Because of environmental conservation and sustainability concerns, reclaimed asphalt pavements and recycled asphalt shingles are increasingly used in the asphalt paving industry to replace virgin asphalt and aggregate materials. However, these recycled materials are often highly aged and can cause cracking issues for asphalt pavements. Additionally, other factors such as binder additives, modifiers, and multiple warm-mix asphalt technologies can alter the performance of the mixtures both positively and negatively. The volumetric mix design alone is not sufficient for evaluating the potential cracking behavior of asphalt mixes. Although many cracking test methods are available, there is no widely accepted performance-related cracking test method that is practical enough for routine use in asphalt mix designs. This paper presents a newly developed, simple, and practical cracking test method for asphalt mix designs. The new cracking test method is repeatable, time- and cost-effective, easily implemented, sensitive to mix compositions, and well correlated to field performance. The new cracking test is performed at an intermediate temperature of 25°C and a loading rate of 50 mm/min. Furthermore, a unitless index is proposed as the cracking resistance indicator for evaluation of the cracking resistance of asphalt mixes. Additionally, the effectiveness of the new cracking test was validated with the test results from FHWA’s accelerated loading facility.


2008 ◽  
Author(s):  
A El-Desouky ◽  
S Easa ◽  
A Mostafa ◽  
A Abd El Halim

Sign in / Sign up

Export Citation Format

Share Document