Speaker recognition performance improvement by enhanced feature extraction of vocal source signals

2015 ◽  
pp. 163-166
2019 ◽  
Vol 17 (2) ◽  
pp. 170-177
Author(s):  
Lei Deng ◽  
Yong Gao

In this paper, authors propose an auditory feature extraction algorithm in order to improve the performance of the speaker recognition system in noisy environments. In this auditory feature extraction algorithm, the Gammachirp filter bank is adapted to simulate the auditory model of human cochlea. In addition, the following three techniques are applied: cube-root compression method, Relative Spectral Filtering Technique (RASTA), and Cepstral Mean and Variance Normalization algorithm (CMVN).Subsequently, based on the theory of Gaussian Mixes Model-Universal Background Model (GMM-UBM), the simulated experiment was conducted. The experimental results implied that speaker recognition systems with the new auditory feature has better robustness and recognition performance compared to Mel-Frequency Cepstral Coefficients(MFCC), Relative Spectral-Perceptual Linear Predictive (RASTA-PLP),Cochlear Filter Cepstral Coefficients (CFCC) and gammatone Frequency Cepstral Coefficeints (GFCC)


Author(s):  
Khamis A. Al-Karawi

Background & Objective: Speaker Recognition (SR) techniques have been developed into a relatively mature status over the past few decades through development work. Existing methods typically use robust features extracted from clean speech signals, and therefore in idealized conditions can achieve very high recognition accuracy. For critical applications, such as security and forensics, robustness and reliability of the system are crucial. Methods: The background noise and reverberation as often occur in many real-world applications are known to compromise recognition performance. To improve the performance of speaker verification systems, an effective and robust technique is proposed to extract features for speech processing, capable of operating in the clean and noisy condition. Mel Frequency Cepstrum Coefficients (MFCCs) and Gammatone Frequency Cepstral Coefficients (GFCC) are the mature techniques and the most common features, which are used for speaker recognition. MFCCs are calculated from the log energies in frequency bands distributed over a mel scale. While GFCC has been acquired from a bank of Gammatone filters, which was originally suggested to model human cochlear filtering. This paper investigates the performance of GFCC and the conventional MFCC feature in clean and noisy conditions. The effects of the Signal-to-Noise Ratio (SNR) and language mismatch on the system performance have been taken into account in this work. Conclusion: Experimental results have shown significant improvement in system performance in terms of reduced equal error rate and detection error trade-off. Performance in terms of recognition rates under various types of noise, various Signal-to-Noise Ratios (SNRs) was quantified via simulation. Results of the study are also presented and discussed.


2020 ◽  
Vol 31 (06) ◽  
pp. 412-441 ◽  
Author(s):  
Richard H. Wilson ◽  
Victoria A. Sanchez

Abstract Background In the 1950s, with monitored live voice testing, the vu meter time constant and the short durations and amplitude modulation characteristics of monosyllabic words necessitated the use of the carrier phrase amplitude to monitor (indirectly) the presentation level of the words. This practice continues with recorded materials. To relieve the carrier phrase of this function, first the influence that the carrier phrase has on word recognition performance needs clarification, which is the topic of this study. Purpose Recordings of Northwestern University Auditory Test No. 6 by two female speakers were used to compare word recognition performances with and without the carrier phrases when the carrier phrase and test word were (1) in the same utterance stream with the words excised digitally from the carrier (VA-1 speaker) and (2) independent of one another (VA-2 speaker). The 50-msec segment of the vowel in the target word with the largest root mean square amplitude was used to equate the target word amplitudes. Research Design A quasi-experimental, repeated measures design was used. Study Sample Twenty-four young normal-hearing adults (YNH; M = 23.5 years; pure-tone average [PTA] = 1.3-dB HL) and 48 older hearing loss listeners (OHL; M = 71.4 years; PTA = 21.8-dB HL) participated in two, one-hour sessions. Data Collection and Analyses Each listener had 16 listening conditions (2 speakers × 2 carrier phrase conditions × 4 presentation levels) with 100 randomized words, 50 different words by each speaker. Each word was presented 8 times (2 carrier phrase conditions × 4 presentation levels [YNH, 0- to 24-dB SL; OHL, 6- to 30-dB SL]). The 200 recorded words for each condition were randomized as 8, 25-word tracks. In both test sessions, one practice track was followed by 16 tracks alternated between speakers and randomized by blocks of the four conditions. Central tendency and repeated measures analyses of variance statistics were used. Results With the VA-1 speaker, the overall mean recognition performances were 6.0% (YNH) and 8.3% (OHL) significantly better with the carrier phrase than without the carrier phrase. These differences were in part attributed to the distortion of some words caused by the excision of the words from the carrier phrases. With the VA-2 speaker, recognition performances on the with and without carrier phrase conditions by both listener groups were not significantly different, except for one condition (YNH listeners at 8-dB SL). The slopes of the mean functions were steeper for the YNH listeners (3.9%/dB to 4.8%/dB) than for the OHL listeners (2.4%/dB to 3.4%/dB) and were <1%/dB steeper for the VA-1 speaker than for the VA-2 speaker. Although the mean results were clear, the variability in performance differences between the two carrier phrase conditions for the individual participants and for the individual words was striking and was considered in detail. Conclusion The current data indicate that word recognition performances with and without the carrier phrase (1) were different when the carrier phrase and target word were produced in the same utterance with poorer performances when the target words were excised from their respective carrier phrases (VA-1 speaker), and (2) were the same when the carrier phrase and target word were produced as independent utterances (VA-2 speaker).


Author(s):  
Htwe Pa Pa Win ◽  
Phyo Thu Thu Khine ◽  
Khin Nwe Ni Tun

This paper proposes a new feature extraction method for off-line recognition of Myanmar printed documents. One of the most important factors to achieve high recognition performance in Optical Character Recognition (OCR) system is the selection of the feature extraction methods. Different types of existing OCR systems used various feature extraction methods because of the diversity of the scripts’ natures. One major contribution of the work in this paper is the design of logically rigorous coding based features. To show the effectiveness of the proposed method, this paper assumed the documents are successfully segmented into characters and extracted features from these isolated Myanmar characters. These features are extracted using structural analysis of the Myanmar scripts. The experimental results have been carried out using the Support Vector Machine (SVM) classifier and compare the pervious proposed feature extraction method.


2021 ◽  
Vol 13 (10) ◽  
pp. 265
Author(s):  
Jie Chen ◽  
Bing Han ◽  
Xufeng Ma ◽  
Jian Zhang

Underwater target recognition is an important supporting technology for the development of marine resources, which is mainly limited by the purity of feature extraction and the universality of recognition schemes. The low-frequency analysis and recording (LOFAR) spectrum is one of the key features of the underwater target, which can be used for feature extraction. However, the complex underwater environment noise and the extremely low signal-to-noise ratio of the target signal lead to breakpoints in the LOFAR spectrum, which seriously hinders the underwater target recognition. To overcome this issue and to further improve the recognition performance, we adopted a deep-learning approach for underwater target recognition, and a novel LOFAR spectrum enhancement (LSE)-based underwater target-recognition scheme was proposed, which consists of preprocessing, offline training, and online testing. In preprocessing, we specifically design a LOFAR spectrum enhancement based on multi-step decision algorithm to recover the breakpoints in LOFAR spectrum. In offline training, the enhanced LOFAR spectrum is adopted as the input of convolutional neural network (CNN) and a LOFAR-based CNN (LOFAR-CNN) for online recognition is developed. Taking advantage of the powerful capability of CNN in feature extraction, the recognition accuracy can be further improved by the proposed LOFAR-CNN. Finally, extensive simulation results demonstrate that the LOFAR-CNN network can achieve a recognition accuracy of 95.22%, which outperforms the state-of-the-art methods.


Author(s):  
Musab T. S. Al-Kaltakchi ◽  
Haithem Abd Al-Raheem Taha ◽  
Mohanad Abd Shehab ◽  
Mohamed A.M. Abdullah

<p><span lang="EN-GB">In this paper, different feature extraction and feature normalization methods are investigated for speaker recognition. With a view to give a good representation of acoustic speech signals, Power Normalized Cepstral Coefficients (PNCCs) and Mel Frequency Cepstral Coefficients (MFCCs) are employed for feature extraction. Then, to mitigate the effect of linear channel, Cepstral Mean-Variance Normalization (CMVN) and feature warping are utilized. The current paper investigates Text-independent speaker identification system by using 16 coefficients from both the MFCCs and PNCCs features. Eight different speakers are selected from the GRID-Audiovisual database with two females and six males. The speakers are modeled using the coupling between the Universal Background Model and Gaussian Mixture Models (GMM-UBM) in order to get a fast scoring technique and better performance. The system shows 100% in terms of speaker identification accuracy. The results illustrated that PNCCs features have better performance compared to the MFCCs features to identify females compared to male speakers. Furthermore, feature wrapping reported better performance compared to the CMVN method. </span></p>


2021 ◽  
Vol 2083 (4) ◽  
pp. 042007
Author(s):  
Xiaowen Liu ◽  
Juncheng Lei

Abstract Image recognition technology mainly includes image feature extraction and classification recognition. Feature extraction is the key link, which determines whether the recognition performance is good or bad. Deep learning builds a model by building a hierarchical model structure like the human brain, extracting features layer by layer from the data. Applying deep learning to image recognition can further improve the accuracy of image recognition. Based on the idea of clustering, this article establishes a multi-mix Gaussian model for engineering image information in RGB color space through offline learning and expectation-maximization algorithms, to obtain a multi-mix cluster representation of engineering image information. Then use the sparse Gaussian machine learning model on the YCrCb color space to quickly learn the distribution of engineering images online, and design an engineering image recognizer based on multi-color space information.


Sign in / Sign up

Export Citation Format

Share Document