The influence of support structure dynamics on floating wind turbine performance

2015 ◽  
pp. 835-843
Author(s):  
K Cuschieri ◽  
T Sant ◽  
R Farrugia
Author(s):  
E. Kim ◽  
L. Manuel

This study examines extreme response statistics for a monopile-supported 5-MW offshore wind turbine in 20 meters of water that is subjected to coupled wind and wave input fields during a hurricane. Over approximately 120 hours, these hurricane-induced input fields yield changing characteristics of the excitation and the response of a parked turbine. As the storm evolves, the directionality of the wind and waves changes; short-crested waves are simulated and associated wind velocity fields are generated. Aerodynamic loads on the rotor and hydrodynamic loads on the support structure are simulated in coupled response analyses. Because yaw control backup power is not assured during the hurricane, different assumptions on yaw misalignment are assumed in the turbine response simulations. Time series of various turbine response measures are evaluated. Response extremes are of particular interest; we discuss the relative importance of wind and waves on the overall turbine performance during the storm. We also assess the role of yaw control systems and the effect of loss of power to such systems during tropical storms by examining the turbine response for alternative situations of turbine misalignment. Ultimately, this study seeks to provide the framework for assessing turbine designs for tropical cyclone conditions.


2012 ◽  
Vol 229-231 ◽  
pp. 613-616
Author(s):  
Yan Jue Gong ◽  
Yuan Yuan Zhang ◽  
Fu Zhao ◽  
Hui Yu Xiang ◽  
Chun Ling Meng ◽  
...  

As an important part of the vertical axis wind turbine, the support structure should have high strength and stiffness. This article adopts finite element method to model a kind of tower structure of the vertical axis wind turbine and carry out static and modal analysis. The static and dynamic characteristic results of tower in this paper provide reference for optimization design the support structure of wind turbine further.


2021 ◽  
Vol 78 ◽  
pp. 102970
Author(s):  
B. Wiegard ◽  
M. König ◽  
J. Lund ◽  
L. Radtke ◽  
S. Netzband ◽  
...  

2021 ◽  
Vol 221 ◽  
pp. 108528
Author(s):  
Shengwen Xu ◽  
Motohiko Murai ◽  
Xuefeng Wang ◽  
Kensaku Takahashi

Sign in / Sign up

Export Citation Format

Share Document