Transient Conduction with Spatial Gradients

2017 ◽  
pp. 189-257
Author(s):  
Randall F. Barron ◽  
Gregory F. Nellis
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Roko Duplancic ◽  
Darko Kero

AbstractWe describe a novel approach for quantification and colocalization of immunofluorescence (IF) signals of multiple markers on high-resolution panoramic images of serial histological sections utilizing standard staining techniques and readily available software for image processing and analysis. Human gingiva samples stained with primary antibodies against the common leukocyte antigen CD45 and factors related to heparan sulfate glycosaminoglycans (HS GAG) were used. Expression domains and spatial gradients of IF signals were quantified by histograms and 2D plot profiles, respectively. The importance of histomorphometric profiling of tissue samples and IF signal thresholding is elaborated. This approach to quantification of IF staining utilizes pixel (px) counts and comparison of px grey value (GV) or luminance. No cell counting is applied either to determine the cellular content of a given histological section nor the number of cells positive to the primary antibody of interest. There is no selection of multiple Regions-Of-Interest (ROIs) since the entire histological section is quantified. Although the standard IF staining protocol is applied, the data output enables colocalization of multiple markers (up to 30) from a given histological sample. This can serve as an alternative for colocalization of IF staining of multiple primary antibodies based on repeating cycles of staining of the same histological section since those techniques require non standard staining protocols and sophisticated equipment that can be out of reach for small laboratories in academic settings. Combined with the data from ontological bases, this approach to quantification of IF enables creation of in silico virtual disease models.


Ibis ◽  
2021 ◽  
Author(s):  
Johann H. Van Niekerk ◽  
Rodrigo Megía‐Palma ◽  
Giovanni Forcina
Keyword(s):  

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4859
Author(s):  
Leigh Stanger ◽  
Thomas Rockett ◽  
Alistair Lyle ◽  
Matthew Davies ◽  
Magnus Anderson ◽  
...  

This article elucidates the need to consider the inherent spatial transfer function (blur), of any thermographic instrument used to measure thermal fields. Infrared thermographic data were acquired from a modified, commercial, laser-based powder bed fusion printer. A validated methodology was used to correct for spatial transfer function errors in the measured thermal fields. The methodology was found to make a difference of 40% to the measured signal levels and a 174 °C difference to the calculated effective temperature. The spatial gradients in the processed thermal fields were found to increase significantly. These corrections make a significant difference to the accuracy of validation data for process and microstructure modeling. We demonstrate the need for consideration of image blur when quantifying the thermal fields in laser-based powder bed fusion in this work.


FEBS Letters ◽  
1999 ◽  
Vol 457 (3) ◽  
pp. 452-454 ◽  
Author(s):  
Guy C. Brown ◽  
Boris N. Kholodenko
Keyword(s):  

2005 ◽  
Vol 73 (3) ◽  
pp. 461-468 ◽  
Author(s):  
Timothy T. Clark ◽  
Ye Zhou

The Richtmyer-Meshkov mixing layer is initiated by the passing of a shock over an interface between fluid of differing densities. The energy deposited during the shock passage undergoes a relaxation process during which the fluctuational energy in the flow field decays and the spatial gradients of the flow field decrease in time. This late stage of Richtmyer-Meshkov mixing layers is studied from the viewpoint of self-similarity. Analogies with weakly anisotropic turbulence suggest that both the bubble-side and spike-side widths of the mixing layer should evolve as power-laws in time, with the same power-law exponent and virtual time origin for both sides. The analogy also bounds the power-law exponent between 2∕7 and 1∕2. It is then shown that the assumption of identical power-law exponents for bubbles and spikes yields fits that are in good agreement with experiment at modest density ratios.


2000 ◽  
Vol 11 (11) ◽  
pp. 3873-3883 ◽  
Author(s):  
Maryse Bailly ◽  
Jeffrey Wyckoff ◽  
Boumediene Bouzahzah ◽  
Ross Hammerman ◽  
Vonetta Sylvestre ◽  
...  

To determine the distribution of the epidermal growth factor (EGF) receptor (EGFR) on the surface of cells responding to EGF as a chemoattractant, an EGFR-green fluorescent protein chimera was expressed in the MTLn3 mammary carcinoma cell line. The chimera was functional and easily visualized on the cell surface. In contrast to other studies indicating that the EGFR might be localized to certain regions of the plasma membrane, we found that the chimera is homogeneously distributed on the plasma membrane and becomes most concentrated in vesicles after endocytosis. In spatial gradients of EGF, endocytosed receptor accumulates on the upgradient side of the cell. Visualization of the binding of fluorescent EGF to cells reveals that the affinity properties of the receptor, together with its expression level on cells, can provide an initial amplification step in spatial gradient sensing.


Sign in / Sign up

Export Citation Format

Share Document