On the effect of blade twist angle on Horizontal-Axis Wind Turbine performance

2016 ◽  
pp. 959-964
Author(s):  
Huei Weng ◽  
Hui-Ren Huang
2019 ◽  
Vol 11 (11) ◽  
pp. 168781401989211
Author(s):  
Deyaa Nabil Elshebiny ◽  
Ali AbdelFattah Hashem ◽  
Farouk Mohammed Owis

This article introduces novel blade tip geometric modification to improve the aerodynamic performance of horizontal-axis wind turbine by adding auxiliary cascading blades toward the tip region. This study focuses on the new turbine shape and how it enhances the turbine performance in comparison with the classical turbine. This study is performed numerically for National Renewable Energy Laboratory Phase II (non-optimized wind turbine) taking into consideration the effect of adding different cascade configurations on the turbine performance using ANSYS FLUENT program. The analysis of single-auxiliary and double-auxiliary cascade blades has shown an impact on increasing the turbine power of 28% and 76%, respectively, at 72 r/min and 12.85 m/s of wind speed. Knowing that the performance of cascaded wind turbine depends on the geometry, solidity and operating conditions of the original blade; therefore, these results are not authorized for other cases.


1986 ◽  
Vol 108 (4) ◽  
pp. 400-406 ◽  
Author(s):  
A. A. Afjeh ◽  
T. G. Keith

Based on the assumption that wake geometry of a horizontal-axis wind turbine closely resembles that of a hovering helicopter, a method is presented for predicting the performance of a horizontal-axis wind turbine. A vortex method is used in which the wake is composed of an intense tip-vortex and a diffused inboard wake. Performance parameters are calculated by application of the Biot-Savart law along with the Kutta-Joukowski theorem. Predictions are shown to compare favorably with values from a more complicated full free wake analysis and with existing experimental data, but require more computational effort than an existing fast free wake method.


Energy ◽  
2021 ◽  
pp. 122654
Author(s):  
Wafaa Mostafa ◽  
Abouelmagd Abdelsamie ◽  
Momtaz Sedrak ◽  
Dominique Thévenin ◽  
Mohamed H. Mohamed

2001 ◽  
Vol 25 (6) ◽  
pp. 501-506 ◽  
Author(s):  
Ahmet Z. Sahin ◽  
Ahmed Z. Al-Garni ◽  
Abdulghani Al-Farayedhi

2016 ◽  
Vol 78 (8-4) ◽  
Author(s):  
Muhammad Hafidz Ariffudin ◽  
Fazila Mohd Zawawi ◽  
Haslinda Mohamed Kamar ◽  
Nazri Kamsah

There has been an increasing demand for renewable energy in order to create a sustainable society as the non-renewable energies such as fossil fuel resources are limited. Modern wind turbines claim that they have a high efficiency in term of wind energy extraction. However, there are still having losses due to tip vortex causing to a reduction in performance.  Motivated by this reason, this research aims at exploring the possibility to increase the performance of low speed small-scaled horizontal axis wind turbine with various tip devices using Computational Fluid Dynamics (CFD). Four wind turbine blades with different tip devices which consist of sword tip, swept tip, upwind winglet and downwind winglet are compared with wind turbine blade without tip device in term of CP. The application of tip device can significantly reduce induced tip vortex and improve wind turbine performance. For TSR below than 4, adding a sword tip increases CP about 7.3%, swept tip increases CP about 9.1%, upwind winglet increases CP about 1.8% and downwind winglet increases CP about 3.2%. It is observed that the best tip device for low wind speed application is swept tip as it give the highest performance increment compared to without tip device.


1994 ◽  
Vol 116 (2) ◽  
pp. 287-292 ◽  
Author(s):  
Yukimaru Shimizu ◽  
Takaya Yoshikawa ◽  
Shinji Matsumura

This paper describes the experimental results of output power augmentation of a horizontal axis wind turbine with a tip vane. In order to find the relationship between the performance of the turbine and the configuration of the tip vane, various types and sizes were used. It was found that V-type and S-type tip vanes can improve turbine performance. Also, the dimensions of V- and S-type tip vanes were investigated. The maximum improvement achieved was a 25 percent increase in power in an existing wind turbine without a tip vane.


Author(s):  
N. Asmuin ◽  
◽  
Basuno B. ◽  
M.F. Yaakub ◽  
N.A. Nor Salim ◽  
...  

The present work uses the method of Blade Element Momentum Theory as suggested by Hansen. The method applied to three blade models adopted from Rahgozar S. with the airfoil data used the data provided by Wood D. The wind turbine performance described in term of the thrust coefficient C_T, torque coefficient C_Q and the power coefficient C_p . These three coefficient can be deduced from the Momentum theory or from the Blade element Theory(BET). The present work found the performance coefficient derived from the Momentum theory tent to over estimate. It is suggested to used the BET formulation in presenting these three coefficients. In overall the Blade Element Momentum Theory follows the step by step as described by Hansen work well for these three blade models. However a little adjustment on the blade data is needed. To the case of two bladed horizontal axis wind


Sign in / Sign up

Export Citation Format

Share Document