scholarly journals Insulin-like Growth Factor-I (IGF-I) Prevents Amphotericin B (AmpB)-induced Apoptosis in Renal Cell Lines • 1699

1997 ◽  
Vol 41 ◽  
pp. 286-286
Author(s):  
Despina E. Varlam ◽  
Mustafa M. Siddiq ◽  
Stuart Horowitz ◽  
Frederick J. Kaskel ◽  
Lance A. Parton
1998 ◽  
Vol 43 ◽  
pp. 315-315
Author(s):  
Despina E Varlam ◽  
Mustafa M Siddiq ◽  
Frederick J Kaskel ◽  
Lance A Parton

1997 ◽  
Vol 17 (1) ◽  
pp. 427-435 ◽  
Author(s):  
R O'Connor ◽  
A Kauffmann-Zeh ◽  
Y Liu ◽  
S Lehar ◽  
G I Evan ◽  
...  

Using a series of insulin-like growth factor I (IGF-I) receptor mutants, we have attempted to define domains required for transmitting the antiapoptotic signal from the receptor and to compare these domains with those required for mitogenesis or transformation. In FL5.12 cells transfected with wild-type IGF-I receptors, IGF-I affords protection from interleukin 3 withdrawal but is not mitogenic. An IGF-I receptor lacking a functional ATP binding site provided no protection from apoptosis. However, receptors mutated at tyrosine residue 950 or in the tyrosine cluster (1131, 1135, and 1136) within the kinase domain remained capable of suppressing apoptosis, although such mutations are known to inactivate transforming and mitogenic functions. In the C terminus of the IGF-I receptor, two mutations, one at tyrosine 1251 and one which replaced residues histidine 1293 and lysine 1294, abolished the antiapoptotic function, whereas mutation of the four serines at 1280 to 1283 did not. Interestingly, receptors truncated at the C terminus had enhanced antiapoptotic function. In Rat-1/ c-MycER fibroblasts, the Y950F mutant and the tyrosine cluster mutant could still provide protection from c-Myc-induced apoptosis, whereas mutant Y1250/1251F could not. These studies demonstrate that the domains of the IGF-I receptor required for its antiapoptotic function are distinct from those required for its proliferation or transformation functions and suggest that domains of the receptor required for inhibition of apoptosis are necessary but not sufficient for transformation.


Blood ◽  
1996 ◽  
Vol 88 (6) ◽  
pp. 2250-2258 ◽  
Author(s):  
P Georgii-Hemming ◽  
HJ Wiklund ◽  
O Ljunggren ◽  
K Nilsson

Human multiple myeloma (MM) represents a highly aneuploid tumor as shown by cytogenetic studies. This may partly explain the heterogeneity with regard to growth factor requirements demonstrated among MM cells. We have previously reported the expression of insulin-like growth factor I (IGF-I) and IGF-I receptor (IGF-IR) mRNA in some MM cell lines. In this study we investigated the role of IGF-I as a growth and/or survival factor in three MM cell lines: LP-1, EJM, and Karpas 707. We report that all cell lines expressed IGF-I and IGF-IR mRNA and protein. LP-1 and Karpas 707, but not EJM, were stimulated to proliferation in a dose-dependent manner by exogenous IGF-I. An IGF-IR blocking antibody inhibited both the IGF-I-induced and spontaneous growth of LP-1, and Karpas 707, while the EJM cell line was unaffected by the addition of the antibody. In conclusion, our results show that IGF-I can act as a growth factor in human MM, and they suggest that an autocrine IGF-I loop may contribute to the growth and survival in some MM cell lines.


2004 ◽  
Vol 181 (1) ◽  
pp. 139-146 ◽  
Author(s):  
K Kataoka ◽  
D Yu ◽  
M Miura

We have investigated the role of the NPXY motif in the insulin-like growth factor I receptor (IGF-IR) by focusing on the activation of the phosphatidylinositol-3' kinase (PI3-K) pathway and DNA synthesis following IGF-I stimulation. For this purpose, we established stable R-cell lines, which are deficient in endogenous IGF-IR, and express human IGF-IR lacking the whole NPEY(950) sequence (DeltaNPEY). The DeltaNPEY cells showed an apparent autophosphorylation of IGF-IR, albeit with reduced sensitivity to stimulation compared with cells expressing similar levels of wild-type IGF-IR. Activation of insulin receptor substrate (IRS)-1 and IRS-2 was severely impaired in DeltaNPEY cells even at high concentrations of IGF-I. However, recruitment of p85, a regulatory subunit of PI3-K, to activated IRS-2 was similar between the cell lines, but recruitment of p85 to IRS-1 was reduced in DeltaNPEY cells. Essentially similar levels of p85- or phosphotyrosine-associated PI3-K and Akt activities were observed between the cell lines, although the sensitivity to stimulation was reduced in DeltaNPEY cells. Activation of extracellular signal-regulated kinase and DNA synthesis were virtually unaffected by the mutation, in terms of both sensitivity to stimulation and responsiveness. DNA synthesis was completely inhibited by the PI3-K inhibitor, LY294002. These results indicate that the IGF-IR is able to activate the PI3-K pathway and induce DNA synthesis in a normal fashion without the NPXY motif when the receptor is fully activated.


Sign in / Sign up

Export Citation Format

Share Document