scholarly journals BFU-E COLONY GROWTH IN RESPONSE TO HYDROXYUREA: CORRELATION BETWEEN IN VITRO AND IN VIVO FETAL HEMOGLOBIN INDUCTION 158

1997 ◽  
Vol 41 (5) ◽  
pp. 778-778
Author(s):  
Y M Yang ◽  
B Pace ◽  
D Kitchens ◽  
S K Ballas ◽  
A Shah ◽  
...  
Author(s):  
Yih-Ming Yang ◽  
Betty Pace ◽  
David Kitchens ◽  
Samir K. Ballas ◽  
Arvind Shah ◽  
...  

Blood ◽  
1991 ◽  
Vol 77 (12) ◽  
pp. 2569-2576 ◽  
Author(s):  
T Papayannopoulou ◽  
B Nakamoto ◽  
NP Anagnou ◽  
D Chui ◽  
L Dow ◽  
...  

Abstract Juvenile chronic myelocytic leukemia (JCML) is a rare hematopoietic neoplasia of early childhood with distinct hematologic and biochemical features. We studied the biologic properties and the globin synthetic profiles of JCML erythroid cells both in vivo and in vitro from a total of 24 patients. In these cases we observed the exuberant colony-forming unit-macrophage (CFU-M) colony growth, as reported previously. Furthermore, in contrast to previous reports, we found significant erythroid colony growth in most of our cases (average: 1,182 burst- forming unit-erythroid [BFUe] per 10(5) plated cells, range: 40 to 6,927). This growth was by and large erythropoietin-dependent and was not greatly influenced by other added cytokines. By several criteria all erythroid colony growth detected in vitro was derived from JCML progenitors. The globin synthetic profile of JCML erythroid cells showed high levels of fetal hemoglobin both in vivo and in vitro (gamma/gamma + beta: 53% to 94% in reticulocytes, 62% to 98% in BFUe- derived cells). In addition (in seven cases studied) we detected embryonic globins (epsilon and zeta) at the protein and messenger RNA level, a novel finding for primary leukemic cells. We speculate that the transformed erythroid cells in JCML harbor a trans environment supporting expression of developmentally earlier genes (fetal, embryonic). However, in contrast to other acute or subacute leukemias, JCML erythroid cells also have the ability to reach full maturation to the red cell level, thus allowing detection of this primitive program in vivo.


Blood ◽  
1991 ◽  
Vol 77 (12) ◽  
pp. 2569-2576 ◽  
Author(s):  
T Papayannopoulou ◽  
B Nakamoto ◽  
NP Anagnou ◽  
D Chui ◽  
L Dow ◽  
...  

Juvenile chronic myelocytic leukemia (JCML) is a rare hematopoietic neoplasia of early childhood with distinct hematologic and biochemical features. We studied the biologic properties and the globin synthetic profiles of JCML erythroid cells both in vivo and in vitro from a total of 24 patients. In these cases we observed the exuberant colony-forming unit-macrophage (CFU-M) colony growth, as reported previously. Furthermore, in contrast to previous reports, we found significant erythroid colony growth in most of our cases (average: 1,182 burst- forming unit-erythroid [BFUe] per 10(5) plated cells, range: 40 to 6,927). This growth was by and large erythropoietin-dependent and was not greatly influenced by other added cytokines. By several criteria all erythroid colony growth detected in vitro was derived from JCML progenitors. The globin synthetic profile of JCML erythroid cells showed high levels of fetal hemoglobin both in vivo and in vitro (gamma/gamma + beta: 53% to 94% in reticulocytes, 62% to 98% in BFUe- derived cells). In addition (in seven cases studied) we detected embryonic globins (epsilon and zeta) at the protein and messenger RNA level, a novel finding for primary leukemic cells. We speculate that the transformed erythroid cells in JCML harbor a trans environment supporting expression of developmentally earlier genes (fetal, embryonic). However, in contrast to other acute or subacute leukemias, JCML erythroid cells also have the ability to reach full maturation to the red cell level, thus allowing detection of this primitive program in vivo.


Plant Disease ◽  
2008 ◽  
Vol 92 (10) ◽  
pp. 1439-1443 ◽  
Author(s):  
Adalberto C. Café-Filho ◽  
Jean Beagle Ristaino

Despite the wide adoption of mefenoxam (Ridomil Gold EC) for vegetables in North Carolina, the incidence of Phytophthora blight on pepper (Capsicum annuum) and squash (Cucurbita pepo) is high. Seventy-five isolates of Phytophthora capsici were collected in five pepper and one squash field in order to assess mefenoxam sensitivity. The relative fitness of resistant and sensitive isolates was contrasted in vitro by their respective rates of colony growth and their ability to produce sporangia in unamended V8 juice agar medium. In in vivo experiments, the aggressiveness of isolates on pepper was evaluated. The frequency of resistant isolates in North Carolina populations was 63%, considerably higher than resistance levels in areas where mefenoxam is not widely adopted. Resistant isolates grew on amended media at rates >80 to 90% and >100% of the nonamended control at 100 μg ml-1 and 5 μg ml-1, respectively. Sensitive isolates did not growth at 5 or 100 μg ml-1. All isolates from three fields, including two pepper and a squash field, were resistant to mefenoxam. Populations from other fields were composed of either mixes of sensitive and resistant isolates or only sensitive isolates. Response to mefenoxam remained stable during the course of in vitro and in planta experiments. Occurrence of a mefenoxam-resistant population of P. capsici on squash is reported here for the first time in North Carolina. When measured by rate of colony growth, sporulation in vitro, or aggressiveness in planta, fitness of resistant isolates was not reduced. Mefenoxam-resistant isolates from squash were as aggressive on pepper as sensitive or resistant pepper isolates. These results suggest that mefenoxam-resistant populations of P. capsici are as virulent and fit as sensitive populations.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2063-2063
Author(s):  
Naoya Uchida ◽  
Claire Drysdale ◽  
Morgan Yapundich ◽  
Jackson Gamer ◽  
Tina Nassehi ◽  
...  

Hematopoietic stem cell gene therapy for hemoglobin disorders, such as sickle cell disease, requires high-level gene marking and robust therapeutic globin expression in erythroid cells (>20% of γ- or β-globin production) for widespread successful clinical application. We previously demonstrated that lentiviral transduction of a truncated human erythropoietin receptor (thEpoR) gene allows for erythropoietin-dependent selective proliferation of gene-modified human erythroid cells during in vitro differentiation (ASH 2017). In this study, we sought to evaluate whether thEpoR can enhance the phenotypic effect of a therapeutic vector in erythroid cells in xenograft mouse and autologous non-human primate transplantation models. To investigate this hypothesis, we designed lentiviral vectors encoding both thEpoR and BCL11A-targeting micro RNA-adapted short hairpin RNA (shmiBCL11A), driven off an erythroid specific ankyrin 1 (ANK1) promoter. Both selective proliferation and high-level fetal hemoglobin (HbF) induction were observed in in vitro erythroid differentiation cultures using transduced human CD34+ cells. Healthy donor CD34+ cells were transduced with shmiBCL11A vector, thEpoR-shmiBCL11A vector, and GFP vector (control). Transduced cells were transplanted into immunodeficient NBSGW mice. Five months post-transplant, xenograft bone marrow cells were evaluated for human cell engraftment (human CD45+) and vector copy number (VCN) in both human CD34+ progenitor cells and glycophorin A+ (GPA+) erythroid cells. HbF production was also measured in GPA+ erythroid cells by reverse phase HPLC. We observed efficient transduction in transduced CD34+ cells in vitro (VCN 2.1-5.1) and similar human cell engraftment among all groups (84-89%). The VCN with thEpoR-shmiBCL11A transduction was 3-fold higher in human erythroid cells when compared to CD34+ cells (p<0.01), but not with shmiBCL11A or GFP vectors. HbF levels were significantly elevated in thEpoR-shmiBCL11A vector (43±6%, p<0.01) when compared to no transduction control (1±0%), but not for either shmiBCL11A vector (3±1%) or GFP vector (1±0%). These data demonstrate selective proliferation of gene-modified erythroid cells, as well as enhanced HbF induction with thEpoR-shmiBCL11A transduction. We then performed autologous rhesus CD34+ cell transplantation using either shmiBCL11A vector (142562 and RA0706, n=2, compared to a GPA promoter-derived shmiBCL11A vector) or thEpoR-shmiBCL11A vector (ZL50 and ZM24, n=2, compared to a Venus-encoding vector). Transduced CD34+ cells were transplanted into autologous rhesus macaques following 2x5Gy total body irradiation. Efficient transduction was observed in CD34+ cells in vitro among all 4 macaques (VCN 3.8-8.7) using a high-density culture protocol (Uchida N, Mol Ther Methods Clin Dev. 2019). In shmiBCL11A transduction animals, engraftment of gene-modified cells (VCN 0.2-1.0) and robust HbF induction (14-16%) were observed 1 month post-transplant. However, VCN and HbF levels were reduced down to VCN ~0.1 and HbF ~0.4% in both animals 6 months post-transplant. In contrast, a thEpoR-shmiBCL11A transduction animal (ZL50) resulted in engraftment of gene-modified cells (VCN 0.8-1.0) and robust HbF induction (~18%) 1 month post-transplant, with both gene marking and HbF levels remaining high at VCN 0.6-0.7 and HbF ~15% 4 months post-transplant. These data suggest that shmiBCL11A transduction results in transient HbF induction in gene-modified erythroid cells, while thEpoR-based selective advantage allows for sustained HbF induction with shmiBCL11A. In summary, we developed erythroid-specific thEpoR-shmiBCL11A expressing vectors, enhancing HbF induction in gene-modified erythroid cells in xenograft mice and rhesus macaques. While further in vivo studies are desirable, the use of thEpoR appears to provide a selective advantage for gene-modified erythroid cells in gene therapy strategies for hemoglobin disorders. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1985 ◽  
Vol 66 (6) ◽  
pp. 1278-1283
Author(s):  
T Suda ◽  
J Suda ◽  
Y Miura ◽  
Y Hayashi ◽  
M Eguchi ◽  
...  

We present the in vitro differentiation of marrow cells from a patient with Down's syndrome accompanied by megakaryoblastic leukemia into basophils in the presence of phytohemagglutinin-stimulated leukocyte conditioned medium, using a liquid culture and methylcellulose culture system. Identification of basophils was established by metachromatic staining with toluidine blue, transmission electron microscopy, and the presence of histamine. However, these basophils did not release histamine in response to calcium ionophore or chemotactic peptide. Samples from suspension cultures that contained 90% basophils showed chromosomal markers characteristic of leukemic cells (48, XY, +11, +21, t(1;15)) in all examined mitoses. The cellular composition of leukemic colonies grown in methylcellulose culture from single cells was studied using the micromanipulation technique. High plating efficiency and extreme predominance of basophil colonies were observed. In a total 137 cultures, 79 revealed colony growth. Of 59 colonies that were analyzed by cytologic examination, 46 were pure basophil colonies. These basophil colonies showed disperse morphology, similar to that of a normal basophil colony. The clonality of the basophil colonies and skewing of lineage expression were documented from leukemic single-cell cultures. These data showed that leukemic cells have the capacity for differentiation into some lineages that are not expressed in vivo.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 14-15
Author(s):  
Sara El Hoss ◽  
Sylvie Cochet ◽  
Auria Godard ◽  
Hongxia Yan ◽  
Michaël Dussiot ◽  
...  

Sickle cell disease (SCD) is an autosomal hereditary recessive disorder caused by a point mutation in the β globin gene resulting in a Glu-to-Val substitution at the 6th position of the β globin protein. The resulting abnormal hemoglobin (HbS) polymerizes under hypoxic conditions driving red blood cell (RBC) sickling (Pauling et al., 1949). While pathobiology of circulating RBCs has been extensively analyzed in SCD, erythropoiesis is surprisingly poorly documented. In β-thalassemia, ineffective erythropoiesis is characterized by high levels of apoptotic erythroblasts during the late stages of terminal differentiation, due to an accumulation of free β-globin chains (Arlet et al., 2016). Ineffective erythropoiesis is the major cause of anemia in β-thalassemia patients. In contrast, a marked decrease in life span of circulating red cells, a feature of sickle red cells, is considered to be the major determinant of chronic anemia in SCD. It is generally surmised that ineffective erythropoiesis contributes little to anemia. The bone marrow environment has been well documented to be hypoxic (0.1 to 6% O2) (Mantel et al., 2015). As hypoxia induces HbS polymerization, we hypothesized that cell death may occur in vivo because of HbS polymer formation in the late stages of differentiation characterized by high intracellular hemoglobin concentration. In the present study, using both in vitro and in vivo derived human erythroblasts we assessed the extent of ineffective erythropoiesis in SCD. We explored the mechanistic basis of the ineffective erythropoiesis in SCD using biochemical, cellular and imaging techniques. In vitro erythroid differentiation using CD34+ cells isolated from SCD patients and from healthy donors was performed. A 2-phase erythroid differentiation protocol was used and cultures were performed at two different oxygen conditions, i.e. normoxia and partial hypoxia (5% O2). We found that hypoxia induces cell death of sickle erythroblasts starting at the polychromatic stage, positively selecting cells with high levels of fetal hemoglobin (HbF). This inference was supported by flow cytometry data showing higher percentages of dead cells within the non-F-cell population as compared to the F-cell population for SCD cells. Moreover, SCD dead cells showed higher levels of chaperon protein HSP70 in the cytoplasm than live cells, while no difference was detected between both subpopulations for control cells, suggesting that cell death of SCD erythroblasts was probably due to HSP70 cytoplasmic sequestration. This was supported by western-blot experiments showing less HSP70 in the nucleus of SCD erythroblasts under hypoxia, associated with decreased levels of GATA-1. At the molecular level, HSP70 was co-immunoprecipitated with HbS under hypoxia indicating that both proteins were in the same complex and suggesting interaction between HSP70 and HbS polymers in the cyotplasm. Importantly, we confirm these results in vivo by showing that in bone marrow of SCD patients (n = 5) cell loss occurs during terminal erythroid differentiation, with a significant drop in the cell count between the polychromatic and the orthochromatic stages (Figure 1). In order to specifically address the role of HbF in cell survival, we used a CRISPR-Cas9 approach to mimic the effect of hereditary persistence of fetal hemoglobin (HPFH). CD34+ cells were transfected either with a gRNA targeting the LRF binding site (-197) or a gRNA targeting an unrelated locus (AAVS1) (Weber, Frati, et al. 2020). As expected, the disruption of the LRF binding site resulted in HbF induction as shown by higher %F-cells compared to AAVS1 control. These higher levels of F-cells resulted in decreased apoptosis, under both normoxic and hypoxic conditions, clearly demonstrating the positive and selective effect of HbF on SCD cell survival (Figure 2). In summary, our study shows that HbF has a dual beneficial effect in SCD by conferring a preferential survival of F-cells in the circulation and by decreasing ineffective erythropoiesis. These findings thus bring new insights into the role of HbF in modulating clinical severity of anemia in SCD by both regulating red cell production and red cell destruction. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 202 (20) ◽  
Author(s):  
Eric C. DiBiasio ◽  
Hilary J. Ranson ◽  
James R. Johnson ◽  
David C. Rowley ◽  
Paul S. Cohen ◽  
...  

ABSTRACT Uropathogenic Escherichia coli (UPEC) is the leading cause of human urinary tract infections (UTIs), and many patients experience recurrent infection after successful antibiotic treatment. The source of recurrent infections may be persistent bacterial reservoirs in vivo that are in a quiescent state and thus are not susceptible to antibiotics. Here, we show that multiple UPEC strains require a quorum to proliferate in vitro with glucose as the carbon source. At low cell density, the bacteria remain viable but enter a quiescent, nonproliferative state. Of the clinical UPEC isolates tested to date, 35% (51/145) enter this quiescent state, including isolates from the recently emerged, multidrug-resistant pandemic lineage ST131 (i.e., strain JJ1886) and isolates from the classic endemic lineage ST73 (i.e., strain CFT073). Moreover, quorum-dependent UPEC quiescence is prevented and reversed by small-molecule proliferants that stimulate colony formation. These proliferation cues include d-amino acid-containing peptidoglycan (PG) tetra- and pentapeptides, as well as high local concentrations of l-lysine and l-methionine. Peptidoglycan fragments originate from the peptidoglycan layer that supports the bacterial cell wall but are released as bacteria grow. These fragments are detected by a variety of organisms, including human cells, other diverse bacteria, and, as we show here for the first time, UPEC. Together, these results show that for UPEC, (i) sensing of PG stem peptide and uptake of l-lysine modulate the quorum-regulated decision to proliferate and (ii) quiescence can be prevented by both intra- and interspecies PG peptide signaling. IMPORTANCE Uropathogenic Escherichia coli (UPEC) is the leading cause of urinary tract infections (UTIs). During pathogenesis, UPEC cells adhere to and infiltrate bladder epithelial cells, where they may form intracellular bacterial communities (IBCs) or enter a nongrowing or slowly growing quiescent state. Here, we show in vitro that UPEC strains at low population density enter a reversible, quiescent state by halting division. Quiescent cells resume proliferation in response to sensing a quorum and detecting external signals, or cues, including peptidoglycan tetra- and pentapeptides.


1980 ◽  
Vol 238 (1) ◽  
pp. H73-H79 ◽  
Author(s):  
P. A. Mueggler ◽  
G. Jones ◽  
J. S. Peterson ◽  
J. M. Bissonnette ◽  
R. D. Koler ◽  
...  

A rightward shift in the blood oxygen dissociation curve occurs during the 1st mo of canine life. A detailed peptide analysis indicated that dogs do not have a separate fetal hemoglobin. Other erythrocyte components such as ATP, K+, Na+, and H+ were excluded as significant mediators of the postnatal oxygen affinity change. Erythrocyte 2,3-DPG levels essentially zero in fetal dogs, increased rapidly during the 1st mo of canine life. There was a significant correlation between this postnatal 2,3-DPG increase and the postnatal decrease in blood oxygen affinity. Dialyzed hemolysates of fetal or adult canine blood have the same intrinsic oxygen affinity and the same response to normal adult levels of 2,3-DPG. Furthermore, the magnitude and direction of this 2,3-DPG-induced decrease in oxygen affinity in vitro are comparable to the in vivo postnatal change in oxygen affinity.


Blood ◽  
1983 ◽  
Vol 61 (5) ◽  
pp. 929-934 ◽  
Author(s):  
BG Durie ◽  
LA Young ◽  
SE Salmon

Abstract Ninety-seven patients with multiple myeloma evaluated serially had both a tritiated thymidine labeling index of bone marrow plasma cells (LI%) and in vitro myeloma stem cell culture performed. Thirty-three patients with myeloma colony growth had in vitro drug sensitivity testing carried out, 18 having in addition in vitro thymidine suicide determinations. The LI% and the likelihood of in vitro myeloma colony growth were highly correlated: the higher the LI%, the more likely was colony or cluster growth (p less than 0.001). The tritiated thymidine suicide of myeloma stem cells was usually very high. There was excellent correlation between in vitro and in vivo drug sensitivity. Both pretreatment drug resistance and selective sensitivity (e.g., interferon, bisantrene, methotrexate, vinblastine) at the time of relapse were accurately detected and correlated well with survival duration (p = 0.01 Wilcoxan). Although LI% and in vitro sensitivity were clearly independent variables, a high LI% (greater than 3%) plus in vitro resistance were associated with a subsequent survival duration of less than 6 mo. The studies allowed dissection of the complex interrelationship between cell kinetics and drug sensitivity.


Sign in / Sign up

Export Citation Format

Share Document