scholarly journals Phosphate Transport in Pig Proximal Small Intestines during Postnatal Development: Lack of Modulation by Calcitriol*

Endocrinology ◽  
1998 ◽  
Vol 139 (4) ◽  
pp. 1500-1507 ◽  
Author(s):  
Bernd Schröder ◽  
Olaf Hattenhauer ◽  
Gerhard Breves

Abstract The role of calcitriol in the intestinal absorption of inorganic phosphate (Pi) during postnatal development was studied in newborn [<1 week postpartum (pp)], suckling (3–4 weeks pp), and weaned (>6 weeks pp) control piglets (con) and piglets suffering from inherited calcitriol deficiency (def). In addition, a number of def piglets were treated with vitamin D3 (def-D3). Regardless of age, plasma calcitriol concentrations in def piglets were unphysiologically low (16–21 pg/ml) and differed significantly from those in respective con animals (60–69 pg/ml) and vitamin D3-treated def piglets (50–56 pg/ml). However, newborn and suckling def piglets had normal Ca (∼3.0 mmol/liter) and Pi (∼2.8 mmol/liter) plasma levels. Def piglets became hypocalcemic (1.9 mmol/liter) and hypophosphatemic (1.9 mmol/liter) between 4–6 weeks pp. Treatment with vitamin D3 significantly increased plasma Ca (3.2 mmol/liter) and Pi (2.7 mmol/liter) levels in weaned def animals. Regardless of calcitriol status, net Pi flux rates (active Pi absorption, as determined with the in vitro Ussing-chamber technique) from the upper small intestines was maximal at birth [170–224 nmol/(cm2·h)] and decreased by approximately 80% during the first week of life before remaining constant [30–50 nmol/(cm2·h)] during the following development. In weaned def piglets, net Pi flux rates were significantly lower by about 80% compared with those in con animals. Treatment of def piglets with vitamin D3 had no effect in newborn and suckling animals but reconstituted net Pi flux rates to normal values at weaning age. Age-dependent and calcitriol-mediated changes in net Pi flux rates were paralleled by respective maximum velocity values of Na+-dependent Pi uptake across the brush border membrane of the enterocytes (newborn piglets, 1.9–2.2 nmol/(mg protein·10 sec); suckling piglets, 0.4–0.6 nmol/(mg protein·10 sec); weaned piglets, 0.7, 0.3, and 0.7 nmol/(mg protein·10 sec) in con, def, and def-D3 animals, respectively). These findings suggest that the apical Pi uptake represents the major rate-limiting step of the overall transepithelial Pi transport. At weaning, Na+/Pi transport across the intestinal brush-border membrane is clearly stimulated by calcitriol, but no significant effects of age or calcitriol on the Km values (0.5–0.7 mmol/liter) were observed. In conclusion, our findings reveal calcitriol-independent mechanisms for active intestinal Pi absorption during the neonatal and suckling periods. The onset of the classical calcitriol-dependent mechanism for active intestinal Pi absorption does not occur until weaning.

2005 ◽  
Vol 24 (12) ◽  
pp. 631-638 ◽  
Author(s):  
S Fatima ◽  
N A Arivarasu ◽  
A A Banday ◽  
A N K Yusufi ◽  
R Mahmood

Chromium is widely used in industry but exposure to chromium compounds in the workplace can result in nephrotoxicity. Various nephrotoxicants affect the brush border membrane (BBM) lining the epithelial cells of the proximal tubule, but there have been no studies regarding the effect of potassium dichromate (K2Cr2O7), a hexava-lent chromium compound, on renal BBM. In the present work, the effect of administering a single intraperitoneal dose (15 mg/kg body weight) of K2Cr2O7 on rat renal BBM enzymes and inorganic phosphate (Pi) transport was studied. The animals were administered normal saline (control) or K2Cr2O7 and sacrificed 1, 2, 4 and 8 days after treatment. K2Cr2O7 induced reversible damage to the rat kidney function as indicated by serum creatinine (Scr) and urea nitrogen levels. The activities of BBM marker enzymes were significantly decreased in isolated BBM vesicles (BBMV) and homogenates of cortex and medulla on 1, 2 and 4 days after administration of K2Cr2O7with complete recovery to control values after 8 days. The decrease in the activities of the enzymes was mainly due to changes in maximum velocity (Vmax) values, while the Michaelis constant (Km) remained unchanged. The sodium dependent Pi transport across BBMV was reduced by 50% after treatment with K2Cr2O7. Thus, the administration of a single dose of K2Cr2O7 leads to impairment in the functions of renal BBM. These results suggest that the nephrotoxicity of K2Cr2O7 may be mediated, at least in part, by its effect on renal BBM.


1985 ◽  
Vol 249 (6) ◽  
pp. F948-F955 ◽  
Author(s):  
S. A. Kempson ◽  
S. T. Turner ◽  
A. N. Yusufi ◽  
T. P. Dousa

Previous studies showed that an increase in NAD+ content in renal cortex in vivo was accompanied by specific inhibition of Na+-dependent inorganic phosphate (Pi) transport across the renal brush border membrane (BBM). Further, in vitro addition of NAD+ to isolated renal BBM vesicles specifically inhibited Na+ gradient-dependent transport of Pi. The present study examined some aspects of the mechanism of this inhibition by NAD+ in vitro and in vivo. When NAD+ was increased in vivo by nicotinamide injection, the apparent Vmax was decreased, but the apparent Km was not different, indicating apparent noncompetitive inhibition. In the presence of 0.3 mM NAD+ added in vitro, the apparent Km for Na+-dependent Pi transport by BBM vesicles was increased, whereas the apparent Vmax was unchanged, indicating apparent competitive inhibition. These changes in apparent Km and apparent Vmax were identical when Pi uptake was measured either at 30-s or at 5-s (the initial rate) incubation times. Inhibition of Pi transport by BBM vesicles in vitro was due primarily to the action of intact added NAD+, although there may be some contribution by isotope dilution due to Pi released from NAD+ by enzymatic hydrolysis. Although in vitro inhibition of Pi transport by added NAD+ was reversed by washing the BBM, the inhibition due to increased NAD+ in vivo persisted after extensive washing of the isolated BBM. The specificity of the inhibitory effect of NAD+ in vivo was indicated by the finding that changes in renal cortical content of ATP or Pi, evoked by loading with glycerol or fructose, did not change BBM transport of Pi.(ABSTRACT TRUNCATED AT 250 WORDS)


1986 ◽  
Vol 251 (5) ◽  
pp. F889-F896
Author(s):  
B. S. Levine ◽  
J. A. Kraut ◽  
D. R. Mishler ◽  
P. W. Crooks

Prolonged metabolic acidosis is associated with depressed phosphate (Pi) uptake by the brush-border membrane (BBM) of the proximal tubule. To examine if changes in systemic pH underlie this inhibition, we measured Pi transport by renal cortical BBM from thyroparathyroidectomized rats with respiratory or metabolic acidosis of 1 or 3 h, respectively, and in appropriate controls. Also, Pi transport was measured in BBM prepared using tissue slices from nonacidotic rats that were preincubated for 20 or 45 min at either pH 6.9 (HCO3 = 10 mM, CO2 = 10%) or 7.4 (HCO3 = 10 mM, CO2 = 2.5%). Despite comparable acidemia (pH 7.06 +/- 0.05 with respiratory acidosis and 7.10 +/- 0.03 with metabolic acidosis), Na-dependent Pi uptake at 5 s incubation was reduced by 15.2 +/- 3.5% with respiratory acidosis compared with paired controls. It was not altered with metabolic acidosis. Vmax in respiratory acidosis (1.2 nmol X mg protein-1 X 5 s-1) was less than in controls (1.6); Kt was similar in both groups. 22Na transport and Na-dependent glucose transport were unchanged. Plasma phosphorus (P) increased from 8.75 +/- 0.35 mg/dl to 12.42 +/- 1.9 with respiratory acidosis. Therefore BBM vesicles transport was measured in controls after plasma P was raised. Under these conditions, Pi transport was similar to that with respiratory acidosis. Also Pi transport by BBM was unchanged when tissue slices were preincubated in vitro at high CO2 concentrations for 20 or 45 min. Thus respiratory acidosis specifically inhibits Na-dependent Pi transport by decreasing the number or rate of the BBM Pi carrier.(ABSTRACT TRUNCATED AT 250 WORDS)


1980 ◽  
Vol 239 (1) ◽  
pp. F13-F16 ◽  
Author(s):  
R. Stoll ◽  
H. Fleisch ◽  
J. P. Bonjour

Treatment with disodium ethane-1-hydroxy-1,1-diphosphonate (EHDP) given in doses of 10 mg P/kg s.c. for 7 days inhibits bone mineral retention and decreases the tubular capacity to reabsorb inorganic phosphate (Pi) in thyroparathyroidectomized (TPTX) rats. In the present work we show that pretreatment with EHDP depressed Na+-dependent Pi uptake by brush border membrane vesicles (BBMV) isolated from renal cortex of TPTX rats. The effect of EHDP was observed after feeding both high (1.2%) and low (0.2%) phosphorus diets. The EHDP-induced changes observed in vitro at the brush border level parallel the variations in the overall tubular Pi transport capacity as assessed by clearance techniques in conscious rats. Na+-dependent glucose uptake by BBMV, as well as alkaline phosphatase activity in cortical homogenates and in the BBMV were not affected by EHDP treatment. Accordingly, EHDP, given in doses that block bone mineral retention, appears to specifically affect the Na+-dependent transport of Pi across the luminal membrane of proximal tubules of renal cortex.


1992 ◽  
Vol 2 (11) ◽  
pp. 1601-1607
Author(s):  
J Isaac ◽  
R P Glahn ◽  
M M Appel ◽  
M Onsgard ◽  
T P Dousa ◽  
...  

Dopamine (DA) is natriuretic and phosphaturic. However, whether the effect of DA on Pi reabsorption is a consequence of its effect on sodium transport is not known. Therefore, this study was performed to determine the effect of DA on the maximal transport of phosphate (TmPi), and upon the capacity of renal proximal brush border membrane (BBM) for (Naextra-vesicular greater than Naintravesicular)-gradient-dependent transport of Pi, as compared with the transport of other solutes. Graded infusions of Pi (0, 1, 2, and 3 mumols/min) were given to thyroparathyroidectomized male Sprague-Dawley rats in the presence of vehicle (0.9% NaCl; N = 5), DA 15 micrograms/kg/min; N = 6), or parathyroid hormone ((PTH); 1 U/kg/min; N = 5). The TmPi for rats infused with DA (3.3 +/- 0.3 mumol/mL) was significantly less than the TmPi for saline control rats (4.4 +/- 0.2 mumol/mL). Rats infused with PTH exhibited the lowest TmPi (1.8 +/- 0.3 mumol/mL). No differences in sodium excretion were observed among any of the groups. Na-dependent Pi transport was studied in BBM vesicles (BBMV) prepared from rats fed a low-phosphate diet for 2 days that were anesthetized, acutely thyroparathyroidectomized, and systemically infused with DA (350 micrograms bolus, plus 35 micrograms/kg/min; N = 8), PTH (33 U/kg bolus, followed by a continuous infusion of 1 U/kg/min; N = 6), or vehicle (1 mL/kg bolus, plus 2 mL/h constant infusion of 0.9% NaCl; N = 8) for 90 min. DA significantly inhibited the Na cotransport of Pi by 22.4 +/- 4.1% (P less than 0.01) as compared with the control group.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document