scholarly journals Endoplasmic Reticulum (ER) Stress in Cumulus-Oocyte Complexes Impairs Pentraxin-3 Secretion, Mitochondrial Membrane Potential (ΔΨm), and Embryo Development

2012 ◽  
Vol 26 (4) ◽  
pp. 562-573 ◽  
Author(s):  
Linda L. Wu ◽  
Darryl L. Russell ◽  
Robert J. Norman ◽  
Rebecca L. Robker
2020 ◽  
Author(s):  
Hao Wang ◽  
Jia-Lin Sun ◽  
Ying-Xing Xu ◽  
Zhong-Guo Sui

Abstract Background: A novel curcumin (Cur) derivative 1g can inhibit the proliferation of colon cancer in vitro and in vivo. The purpose of this study was to explore the role of 1g in inducing apoptosis of colon cancer cells, especially mitochondrial apoptosis and endoplasmic reticulum (ER)-stress caused by reactive oxygen species (ROS).Methods: Bioinformatics was used to analyze differentially expressed mrnas. Gene expression was measured by using qRT-PCR and protein expression was measured by using western blotting. Cell apoptosis, cycle, mitochondrial membrane potential and ROS were analyzed by flow cytometry. Experiments on transplanted tumors in animals.Results: The mechanism of this effect was a change in mitochondrial membrane potential caused by 1g that increased its pro-apoptotic activity. In addition, 1g produced ROS, induced G1 checkpoint blockade, and enhanced ER-stress in colon cancer cells. On the contrary, pretreatment with the ROS scavenging agent N-acetyl-l-cysteine (NAC) inhibited the mitochondrial dysfunction caused by 1g and reversed ER-stress, cell cycle stagnation, and apoptosis. Additionally, pretreatment with the p-PERK inhibitor GSK2606414 significantly reduced ER-stress and reversed the apoptosis induced by colon cancer cells.Conclusions: This study not only found that 1g inherits the safety of Cur and has a more inhibitory effect on colon cancer cells than Cur, but also revealed that excessive production of ROS is one of the mechanisms of anti-tumor action.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 983
Author(s):  
Shruti Shandilya ◽  
Kavindra Kumar Kesari ◽  
Janne Ruokolainen

Vitamin K2, known for its antioxidative and anti-inflammatory properties, can act as a potent neuroprotective molecule. Despite its action against mitochondrial dysfunction, the mechanism underlying the links between the protective effects of vitamin K2 and endoplasmic reticulum (ER) stress along with basal levels of total tau protein and amyloid-beta 42 (Aβ42) has not been elucidated yet. To understand the neuroprotective effect of vitamin K2 during metabolic complications, SH-SY5Y cells were treated with streptozotocin for 24 h and menadione for 2 h in a dose-dependent manner, followed by post-treatment of vitamin K2 for 5 h. The modulating effects of vitamin K2 on cell viability, lactate dehydrogenase release, reactive oxygen species (ROS), mitochondrial membrane potential, ER stress marker (CHOP), an indicator of unfolded protein response (UPR), inositol requiring enzyme 1 (p-IRE1α), glycogen synthase kinase 3 (GSK3α/β), total tau and Aβ42 were studied. Results showed that vitamin K2 significantly reduces neuronal cell death by inhibiting cytotoxicity and ROS levels and helps in the retainment of mitochondrial membrane potential. Moreover, vitamin K2 significantly decreased the expression of CHOP protein along with the levels and the nuclear localization of p-IRE1 α, thus showing its significant role in inhibiting chronic ER stress-mediated UPR and eventually cell death. In addition, vitamin K2 significantly down-regulated the expression of GSK3 α/β together with the levels of total tau protein, with a petite effect on secreted Aβ42 levels. These results suggested that vitamin K2 alleviated mitochondrial damage, ER stress and tauopathy-mediated neuronal cell death, which highlights its role as new antioxidative therapeutics targeting related cellular processes.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 5800-5800
Author(s):  
Yin-Chen Chou ◽  
Chia-Wei Chen ◽  
Yuan-Yeh Kuo ◽  
Liang-In Lin ◽  
Chung-Yi Hu

Abstract Introduction: Acute lymphoblastic leukemias (ALLs) harboring t(9;22)(Ph+-ALL) are very high risk (VHR) ALL displaying poor clinical outcome irrespective of intensive chemotherapies plus tyrosine kinase inhibitor (TKI) treatment. HQ17(3)[10'(Z),13'(E),15'(E)-heptadecatrienyl hydroquinone] isolated from sap of the lacquer tree showed rapid (within 24hrs) and potent cytotoxic effect at micromolar concentration on several ALL cell lines, including Imatinib-refractory Ph+-ALL SUP-B15 cells, but spared normal PB leukocytes, and showed nontoxic in experimental rats after 28-day injection. Therefore HQ17(3) presents as a potential anti-leukemic agents and provide a platform for exploring anti-leukemic adjuvants. Our previous study showed HQ17(3)-induced rapid cell demise, characterized by oxidative stress, mitochondrial membrane potential disturbance, loss of membrane integrity, and nuclear DNA fragmentation. HQ17(3)-induced cell death is a caspase-independent program, and is different from the RIP1-mediated controlled necroptosis since both pan-caspase inhibitor and RIP-1 inhihitor failed to protect SUP-B15 cells from death. The ER stress markers (chaperon Grp78 and phosphorylated-eIF2α) were up-regulated as early as 5hrs after HQ17(3) treatment. Here we aim to illustrate the characters of the HQ17(3)-induced non-classical death on Ph+-SUP-B15 cells, focus on ER stress-associated mitochondrial Ca2+ homeostasis. Methods: Cell death and changes of mitochondria in response to HQ17(3) w/wo inhibitors were analyzed. Cells were stained by Annexin V/PI and analyzed by flow cytometry for cell death. Mitochondria mass, mitochondrial Ca2+ accumulation was detected by fluorescent Mitotracker Green and Rhod-2 probes, respectively. Mitochondrial superoxide was measured by Mitosox stain. Western blot analysis was used to analyze MFN1/2, OPA1 (mitochondrial markers). Nuclear accumulation of apoptosis inducing factor (AIF), co-localization of mitochondrial COX-IV and LC3-II (mitophagy) were revealed by immunofluorescence stain and confocal microscopy. Results: We showed mitochondrial Ca2+ accumulation at the early time when ER stress occurred (Fig 1), accompanied by mitochondrial superoxide elevation, followed by loss of mitochondrial membrane potential (MMP) and nuclear translocation of apoptosis-inducing factor (AIF). HQ17(3) treatment lead to decreased mitochondrial proteins MFN1/2 and OPA1, while Mitotracker Green stain showed significant loss of mitochondrial mass preceded cell death, indicating damaged mitochondria underwent fission followed by mitophagy. Immunofluorescence stain showed evidence of mitophagy (COX IV and LC3B co-localization). Calpain-1 inhibitor PD150606 blocked AIF nuclear translocation but only slightly reduced the HQ17(3)-induced cell death (Fig 2). Further, Ca2+ chelator Bapta-AM prevented mitochondrial superoxide production, MMP loss, mitophagy (Fig 3), and rescued cell death (Fig 1) more effectively. Conclusion: In Ph+-ALL SUP-B15 cells, HQ17(3) induce ER stress by yet-defined mechanism, this mobilizes Ca2+ to mitochondria and acts in multi-facet: a) results in AIF cleavage and translocation to mediate nuclear chromatin fragmentation, b) Ca2+-overload leads to oxidative stress and perturbs mitochondria integrity, c) damaged mitochondria trigger extensive mitophagy and cell death ensues. Therefore, agents that help elicit similar intricate effector network associated with ER/mitochondria stress will have potential to be adjuvants in aiding control of the Ph+ VHR-ALL cells refractory to conventional chemotherapies and TKI regime. Disclosures No relevant conflicts of interest to declare.


1997 ◽  
Vol 78 (4) ◽  
pp. 1928-1934 ◽  
Author(s):  
Sam P. Mostafapour ◽  
Edward A. Lachica ◽  
Edwin W Rubel

Mostafapour, Sam P., Edward A. Lachica, and Edwin W Rubel. Mitochondrial regulation of calcium in the avian choclear nucleus. J. Neurophysiol. 78: 1928–1934, 1997. The role of mitochondria and the endoplasmic reticulum in buffering [Ca2+]i in response to imposed calcium loads in neurons of the chick cochlear nucleus, nucleus magnocellularis (NM), was examined. Intracellular calcium concentrations were measured using fluorometric videomicroscopy. After depolarization with 125 mM KCl, NM neurons demonstrate an increase in [Ca2+]i that returns to near-basal levels within 6 min. Addition of the protonophore carbonylcyanide m-chlorophenylhydrazone (CCCP) dissipated the mitochondrial membrane potential, as evidenced by increased fluorescence when cells were loaded with rhodamine-123. Two micromolar CCCP had minimal effect on baseline [Ca2+]i. However, 2 or 10 μM CCCP interfered with the ability of NM cells to buffer [Ca2+]i in response to KCl depolarization without significantly affecting peak [Ca2+]i. Oligomycin also interfered with postdepolarization regulation of [Ca2+]i, but blocked late (7–8 min postdepolarization) increases in [Ca2+]i caused by CCCP. Thapsigargin had no effect on baseline, peak, or postdepolarization [Ca2+]i in NM cells. These results suggest that normal mitochondrial membrane potential and ATP synthesis play an important role in buffering [Ca2+]i in response to imposed calcium loads in NM neurons. Furthermore, the endoplasmic reticulum does not appear to play a significant role in either of these processes. Thus increases in mitochondrial number and function noted in NM cells after deafferentation may represent an adaptive response to an increased cytosolic calcium load.


2016 ◽  
Vol 94 (1) ◽  
pp. 9-17 ◽  
Author(s):  
Yufeng Wang ◽  
Ligeng Zong ◽  
Xiaolei Wang

Background: Transforming growth factor-β (TGF-β) is known for its role in ventricular remodeling, inflammatory response, cell survival, and apoptosis. However, its role in improving myocardial function in rat hearts subjected to ischemia–reperfusion (I/R) and protecting against apoptosis induced in cardiomyocytes by anoxia–reoxygenation (A/R) has not been elucidated. This study investigated the protective effects and molecular mechanisms of TGF-β on myocardial function and cardiomyocyte apoptosis. Methods and results: We used TUNEL staining, we tested cell viability, and we measured mitochondrial membrane potential and levels of mitochondrial ROS after 6 h of simulated anoxia together with various durations of simulated reoxygenation in H9c2 cells. We further observed the contractile function in rat hearts after they were subjected to 30 min global ischemia and 180 min reperfusion. Pretreatment with TGF-β markedly inhibited apoptosis in H9c2 cells, as evidenced by increased cell viability and decreased numbers of TUNEL-positive cells, maintained mitochondrial membrane potential, and diminished mitochondrial production of reactive oxygen species (ROS). These changes were associated with the inhibition of endoplasmic reticulum (ER) stress-dependent markers of apoptosis (GRP78, CHOP, caspase-12, and JNK), and the modulation of the expression of Bcl2/Bax. Furthermore, TGF-β improved I/R-induced myocardial contractile dysfunction. All of these protective effects were concentration-dependent. Conclusion: Our results show that TGF-β prevents A/R-induced apoptosis of cardiomyocytes and improves myocardial function in rat hearts injured by I/R.


Sign in / Sign up

Export Citation Format

Share Document