Assessment of Sacsin Turnover in Patients With ARSACS: Implications for Molecular Diagnosis and Pathogenesis
Background and Objectives:Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is caused by mutations in SACS gene encoding sacsin, a huge multimodular protein of unknown function. More than 200 SACS mutations have been described worldwide to date. Since ARSACS presents phenotypic variability, previous empirical studies attempted to correlate the nature and position of SACS mutations with the age of onset or with disease severity, though not considering the effect of the various mutations on protein stability. In this work, we studied genotype-phenotype correlation in ARSACS at a functional level.Methods:We analyzed a large set of skin fibroblasts derived from ARSACS patients, including both new and already published cases, carrying mutations of different type affecting diverse domains of the protein.Results:We found that sacsin is almost absent in ARSACS patients, regardless of the nature of the mutation. As expected, we did not detect sacsin in patients with truncating mutations. Interestingly, we found it strikingly reduced or absent also in compound heterozygotes carrying diverse missense mutations. In this case, we excluded SACS mRNA decay, defective translation or faster post-translational degradation as possible causes of protein reduction. Conversely, our results demonstrate that nascent mutant sacsin protein undergoes cotranslational ubiquitination and degradation.Discussion:Our results provide one mechanistic explanation for the lack of genotype-phenotype correlation in ARSACS. We also propose a new and unambiguous criterion for ARSACS diagnosis, that is based on the evaluation of sacsin level. Finally, we identified preemptive degradation of a mutant protein as a novel cause of a human disease.