scholarly journals Correction: Compound Poisson Approximations for Sums of Random Variables

1988 ◽  
Vol 16 (1) ◽  
pp. 429-430 ◽  
Author(s):  
Richard F. Serfozo
1996 ◽  
Vol 33 (01) ◽  
pp. 127-137 ◽  
Author(s):  
P. Vellaisamy ◽  
B. Chaudhuri

We derive upper bounds for the total variation distance, d, between the distributions of two random sums of non-negative integer-valued random variables. The main results are then applied to some important random sums, including cluster binomial and cluster multinomial distributions, to obtain bounds on approximating them to suitable Poisson or compound Poisson distributions. These bounds are generally better than the known results on Poisson and compound Poisson approximations. We also obtain a lower bound for d and illustrate it with an example.


1996 ◽  
Vol 33 (1) ◽  
pp. 127-137 ◽  
Author(s):  
P. Vellaisamy ◽  
B. Chaudhuri

We derive upper bounds for the total variation distance, d, between the distributions of two random sums of non-negative integer-valued random variables. The main results are then applied to some important random sums, including cluster binomial and cluster multinomial distributions, to obtain bounds on approximating them to suitable Poisson or compound Poisson distributions. These bounds are generally better than the known results on Poisson and compound Poisson approximations. We also obtain a lower bound for d and illustrate it with an example.


2011 ◽  
Vol 51 (1) ◽  
pp. 51-65 ◽  
Author(s):  
Jūratė Petrauskienė ◽  
Vydas Čekanavičius

2003 ◽  
Vol 35 (1) ◽  
pp. 228-250 ◽  
Author(s):  
V. Čekanavičius ◽  
Y. H. Wang

Sums of independent random variables concentrated on the same finite discrete, not necessarily lattice, set of points are approximated by compound Poisson distributions and signed compound Poisson measures. Such approximations can be more accurate than the normal distribution. Short asymptotic expansions are constructed.


2003 ◽  
Vol 35 (01) ◽  
pp. 228-250 ◽  
Author(s):  
V. Čekanavičius ◽  
Y. H. Wang

Sums of independent random variables concentrated on the same finite discrete, not necessarily lattice, set of points are approximated by compound Poisson distributions and signed compound Poisson measures. Such approximations can be more accurate than the normal distribution. Short asymptotic expansions are constructed.


1997 ◽  
Vol 29 (02) ◽  
pp. 374-387 ◽  
Author(s):  
V. Čekanavičius

The accuracy of the Normal or Poisson approximations can be significantly improved by adding part of an asymptotic expansion in the exponent. The signed-compound-Poisson measures obtained in this manner can be of the same structure as the Poisson distribution. For large deviations we prove that signed-compound-Poisson measures enlarge the zone of equivalence for tails.


Sign in / Sign up

Export Citation Format

Share Document