scholarly journals Locally conformally flat metrics on surfaces of general type

2020 ◽  
Vol 64 (1) ◽  
pp. 93-103
Author(s):  
Mustafa Kalafat ◽  
Özgür Kelekçi
2015 ◽  
Vol 30 (03n04) ◽  
pp. 1540004 ◽  
Author(s):  
Damiano Anselmi

The properties of quantum gravity are reviewed from the point of view of renormalization. Various attempts to overcome the problem of non-renormalizability are presented, and the reasons why most of them fail for quantum gravity are discussed. Interesting possibilities come from relaxing the locality assumption, which also can inspire the investigation of a largely unexplored sector of quantum field theory. Another possibility is to work with infinitely many independent couplings, and search for physical quantities that only depend on a finite subset of them. In this spirit, it is useful to organize the classical action of quantum gravity, determined by renormalization, in a convenient way. Taking advantage of perturbative local field redefinitions, we write the action as the sum of the Hilbert term, the cosmological term, a peculiar scalar that is important only in higher dimensions, plus invariants constructed with at least three Weyl tensors. We show that the FRLW configurations, and many other locally conformally flat metrics, are exact solutions of the field equations in arbitrary dimensions d>3. If the metric is expanded around such configurations the quadratic part of the action is free of higher-time derivatives. Other well-known metrics, such as those of black holes, are instead affected in nontrivial ways by the classical corrections of quantum origin.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Jing Li ◽  
Shuxiang Feng ◽  
Peibiao Zhao

AbstractIn this paper, we establish a finiteness theorem for $L^{p}$ L p harmonic 1-forms on a locally conformally flat Riemannian manifold under the assumptions on the Schrödinger operators involving the squared norm of the traceless Ricci form. This result can be regarded as a generalization of Han’s result on $L^{2}$ L 2 harmonic 1-forms.


2016 ◽  
Vol 68 (1) ◽  
pp. 67-87
Author(s):  
Hirotaka Ishida

AbstractLet S be a surface of general type. In this article, when there exists a relatively minimal hyperelliptic fibration whose slope is less than or equal to four, we give a lower bound on the Euler–Poincaré characteristic of S. Furthermore, we prove that our bound is the best possible by giving required hyperelliptic fibrations.


2014 ◽  
Vol 16 (02) ◽  
pp. 1350010 ◽  
Author(s):  
GILBERTO BINI ◽  
FILIPPO F. FAVALE ◽  
JORGE NEVES ◽  
ROBERTO PIGNATELLI

We classify the subgroups of the automorphism group of the product of four projective lines admitting an invariant anticanonical smooth divisor on which the action is free. As a first application, we describe new examples of Calabi–Yau 3-folds with small Hodge numbers. In particular, the Picard number is 1 and the number of moduli is 5. Furthermore, the fundamental group is nontrivial. We also construct a new family of minimal surfaces of general type with geometric genus zero, K2 = 3 and fundamental group of order 16. We show that this family dominates an irreducible component of dimension 4 of the moduli space of the surfaces of general type.


Sign in / Sign up

Export Citation Format

Share Document