scholarly journals On the unique factorization theorem for formal power series

1967 ◽  
Vol 7 (2) ◽  
pp. 151-160 ◽  
Author(s):  
Hajime Nishimura
2003 ◽  
Vol 184 (2) ◽  
pp. 369-383 ◽  
Author(s):  
Manfred Droste ◽  
Guo-Qiang Zhang

2021 ◽  
Vol 76 (1) ◽  
Author(s):  
Donatella Merlini

AbstractIn the context of Riordan arrays, the problem of determining the square root of a Bell matrix $$R={\mathcal {R}}(f(t)/t,\ f(t))$$ R = R ( f ( t ) / t , f ( t ) ) defined by a formal power series $$f(t)=\sum _{k \ge 0}f_kt^k$$ f ( t ) = ∑ k ≥ 0 f k t k with $$f(0)=f_0=0$$ f ( 0 ) = f 0 = 0 is presented. It is proved that if $$f^\prime (0)=1$$ f ′ ( 0 ) = 1 and $$f^{\prime \prime }(0)\ne 0$$ f ″ ( 0 ) ≠ 0 then there exists another Bell matrix $$H={\mathcal {R}}(h(t)/t,\ h(t))$$ H = R ( h ( t ) / t , h ( t ) ) such that $$H*H=R;$$ H ∗ H = R ; in particular, function h(t) is univocally determined by a symbolic computational method which in many situations allows to find the function in closed form. Moreover, it is shown that function h(t) is related to the solution of Schröder’s equation. We also compute a Riordan involution related to this kind of matrices.


Algebra ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-10
Author(s):  
Laurent Poinsot

A locally finite category is defined as a category in which every arrow admits only finitely many different ways to be factorized by composable arrows. The large algebra of such categories over some fields may be defined, and with it a group of invertible series (under multiplication). For certain particular locally finite categories, a substitution operation, generalizing the usual substitution of formal power series, may be defined, and with it a group of reversible series (invertible under substitution). Moreover, both groups are actually affine groups. In this contribution, we introduce their coordinate Hopf algebras which are both free as commutative algebras. The semidirect product structure obtained from the action of reversible series on invertible series by anti-automorphisms gives rise to an interaction at the level of their coordinate Hopf algebras under the form of a smash coproduct.


2011 ◽  
Vol 31 (1) ◽  
pp. 331-343 ◽  
Author(s):  
Steven T. Dougherty ◽  
Liu Hongwei

Sign in / Sign up

Export Citation Format

Share Document