scholarly journals Tail Asymptotics for a Random Sign Lindley Recursion

2010 ◽  
Vol 47 (1) ◽  
pp. 72-83 ◽  
Author(s):  
Maria Vlasiou ◽  
Zbigniew Palmowski

We investigate the tail behaviour of the steady-state distribution of a stochastic recursion that generalises Lindley's recursion. This recursion arises in queueing systems with dependent interarrival and service times, and includes alternating service systems and carousel storage systems as special cases. We obtain precise tail asymptotics in three qualitatively different cases, and compare these with existing results for Lindley's recursion and for alternating service systems.

2010 ◽  
Vol 47 (01) ◽  
pp. 72-83
Author(s):  
Maria Vlasiou ◽  
Zbigniew Palmowski

We investigate the tail behaviour of the steady-state distribution of a stochastic recursion that generalises Lindley's recursion. This recursion arises in queueing systems with dependent interarrival and service times, and includes alternating service systems and carousel storage systems as special cases. We obtain precise tail asymptotics in three qualitatively different cases, and compare these with existing results for Lindley's recursion and for alternating service systems.


2009 ◽  
Vol 46 (02) ◽  
pp. 363-371 ◽  
Author(s):  
Offer Kella

In this paper we generalize existing results for the steady-state distribution of growth-collapse processes. We begin with a stationary setup with some relatively general growth process and observe that, under certain expected conditions, point- and time-stationary versions of the processes exist as well as a limiting distribution for these processes which is independent of initial conditions and necessarily has the marginal distribution of the stationary version. We then specialize to the cases where an independent and identically distributed (i.i.d.) structure holds and where the growth process is a nondecreasing Lévy process, and in particular linear, and the times between collapses form an i.i.d. sequence. Known results can be seen as special cases, for example, when the inter-collapse times form a Poisson process or when the collapse ratio is deterministic. Finally, we comment on the relation between these processes and shot-noise type processes, and observe that, under certain conditions, the steady-state distribution of one may be directly inferred from the other.


2004 ◽  
Vol 41 (1) ◽  
pp. 287-291
Author(s):  
Jacqueline Loris-Teghem

For the M[X]/G/1 queueing model with a general exhaustive-service vacation policy, it has been proved that the Laplace-Stieltjes transform (LST) of the steady-state distribution function of the waiting time of a customer arriving while the server is active is the product of the corresponding LST in the bulk arrival model with unremovable server and another LST. The expression given for the latter, however, is valid only under the assumption that the number of groups arriving in an inactive phase is independent of the sizes of the groups. We here give an expression which holds in the general case. For the N-policy case, we also give an expression for the LST of the steady-state distribution function of the waiting time of a customer arriving while the server is inactive.


2009 ◽  
Vol 46 (2) ◽  
pp. 363-371 ◽  
Author(s):  
Offer Kella

In this paper we generalize existing results for the steady-state distribution of growth-collapse processes. We begin with a stationary setup with some relatively general growth process and observe that, under certain expected conditions, point- and time-stationary versions of the processes exist as well as a limiting distribution for these processes which is independent of initial conditions and necessarily has the marginal distribution of the stationary version. We then specialize to the cases where an independent and identically distributed (i.i.d.) structure holds and where the growth process is a nondecreasing Lévy process, and in particular linear, and the times between collapses form an i.i.d. sequence. Known results can be seen as special cases, for example, when the inter-collapse times form a Poisson process or when the collapse ratio is deterministic. Finally, we comment on the relation between these processes and shot-noise type processes, and observe that, under certain conditions, the steady-state distribution of one may be directly inferred from the other.


1981 ◽  
Vol 18 (02) ◽  
pp. 461-472
Author(s):  
V. Ramaswami

The steady-state distribution of the inventory position for a continuous-review (s, S) inventory system is derived in a computationally tractable form. Demands for items in inventory are assumed to form an N-process which is the ‘versatile Markovian point process' introduced by Neuts (1979). The N-process includes the phase-type renewal process, Markov-modulated Poisson process etc., as special cases and is especially useful in modelling a wide variety of qualitative phenomena such as peaked arrivals, interruptions, inhibition or stimulation of arrivals by certain events etc.


1990 ◽  
Vol 27 (1) ◽  
pp. 227-231 ◽  
Author(s):  
Jacqueline Loris-Teghem

We consider a single-server infinite-capacity queueing sysem with Poisson arrivals of customer groups of random size and a general service time distribution, the server of which applies a general exhaustive service vacation policy. We are concerned with the steady-state distribution of the actual waiting time of a customer arriving while the server is active.


1990 ◽  
Vol 27 (01) ◽  
pp. 227-231 ◽  
Author(s):  
Jacqueline Loris-Teghem

We consider a single-server infinite-capacity queueing sysem with Poisson arrivals of customer groups of random size and a general service time distribution, the server of which applies a general exhaustive service vacation policy. We are concerned with the steady-state distribution of the actual waiting time of a customer arriving while the server is active.


1981 ◽  
Vol 18 (2) ◽  
pp. 461-472 ◽  
Author(s):  
V. Ramaswami

The steady-state distribution of the inventory position for a continuous-review (s, S) inventory system is derived in a computationally tractable form. Demands for items in inventory are assumed to form an N-process which is the ‘versatile Markovian point process' introduced by Neuts (1979). The N-process includes the phase-type renewal process, Markov-modulated Poisson process etc., as special cases and is especially useful in modelling a wide variety of qualitative phenomena such as peaked arrivals, interruptions, inhibition or stimulation of arrivals by certain events etc.


2004 ◽  
Vol 41 (01) ◽  
pp. 287-291
Author(s):  
Jacqueline Loris-Teghem

For the M[X]/G/1 queueing model with a general exhaustive-service vacation policy, it has been proved that the Laplace-Stieltjes transform (LST) of the steady-state distribution function of the waiting time of a customer arriving while the server is active is the product of the corresponding LST in the bulk arrival model with unremovable server and another LST. The expression given for the latter, however, is valid only under the assumption that the number of groups arriving in an inactive phase is independent of the sizes of the groups. We here give an expression which holds in the general case. For the N-policy case, we also give an expression for the LST of the steady-state distribution function of the waiting time of a customer arriving while the server is inactive.


1985 ◽  
Vol 248 (5) ◽  
pp. C498-C509 ◽  
Author(s):  
D. Restrepo ◽  
G. A. Kimmich

Zero-trans kinetics of Na+-sugar cotransport were investigated. Sugar influx was measured at various sodium and sugar concentrations in K+-loaded cells treated with rotenone and valinomycin. Sugar influx follows Michaelis-Menten kinetics as a function of sugar concentration but not as a function of Na+ concentration. Nine models with 1:1 or 2:1 sodium:sugar stoichiometry were considered. The flux equations for these models were solved assuming steady-state distribution of carrier forms and that translocation across the membrane is rate limiting. Classical enzyme kinetic methods and a least-squares fit of flux equations to the experimental data were used to assess the fit of the different models. Four models can be discarded on this basis. Of the remaining models, we discard two on the basis of the trans sodium dependence and the coupling stoichiometry [G. A. Kimmich and J. Randles, Am. J. Physiol. 247 (Cell Physiol. 16): C74-C82, 1984]. The remaining models are terter ordered mechanisms with sodium debinding first at the trans side. If transfer across the membrane is rate limiting, the binding order can be determined to be sodium:sugar:sodium.


Sign in / Sign up

Export Citation Format

Share Document