Mouse neural crest cells secrete both urokinase-type and tissue-type plasminogen activators in vitro

Development ◽  
1989 ◽  
Vol 106 (4) ◽  
pp. 685-690 ◽  
Author(s):  
P.A. Menoud ◽  
S. Debrot ◽  
J. Schowing

Neural tubes of E8-5 day mouse embryos were dissected and cultured in serum substitute-supplemented medium to allow the emigration of neural crest cells. After 48 h of culture the neural tubes were removed. The neural crest cells were then cultured for 12 h in serum-free medium, and their culture supernatant was studied by electrophoresis and zymography. The cultured cells were shown to secrete both urokinase-type and tissue-type plasminogen activators. When the truncal neural tube was divided in four equal segments, the secretion pattern of the two types of plasminogen activators was similar for the cells from the three most anterior segments; cells having migrated from the most caudal one, i.e. consisting of the neural plate, secreted a higher level of urokinase-type plasminogen activator. The secretion in vitro of plasminogen activators by neural crest cells is in accord with the postulated importance of these proteases in cellular migration.

Development ◽  
1984 ◽  
Vol 84 (1) ◽  
pp. 49-62
Author(s):  
Kazuo Ito ◽  
Takuji Takeuchi

A culture method for neural crest cells of mouse embryo is described. Trunk neural tubes were dissected from 9-day mouse embryos and explanted in culture dishes. The developmental potential of mouse neural crest in vitro was shown to be essentially similar to that of avian neural crest. In the mouse, however, melanocytes always appeared in association with the epithelial sheet close to the explant. Neural crest cells surrounding the epithelial sheet, which probably migrated from the neural tubes in the early culture phase, never differentiated into melanocytes. The bimodal behaviour of mouse crest cells seems to be due to the heterogenous potency of the crest cells and the interaction of these cells with the surrounding microenvironment. This culture system is well suited for various experiments including the analysis of gene control on the differentiation of neural crest cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Cedric Thues ◽  
Jorge S. Valadas ◽  
Liesbeth Deaulmerie ◽  
Ann Geens ◽  
Amit K. Chouhan ◽  
...  

AbstractCircumferential skin creases (CSC-KT) is a rare polymalformative syndrome characterised by intellectual disability associated with skin creases on the limbs, and very characteristic craniofacial malformations. Previously, heterozygous and homozygous mutations in MAPRE2 were found to be causal for this disease. MAPRE2 encodes for a member of evolutionary conserved microtubule plus end tracking proteins, the end binding (EB) family. Unlike MAPRE1 and MAPRE3, MAPRE2 is not required for the persistent growth and stabilization of microtubules, but plays a role in other cellular processes such as mitotic progression and regulation of cell adhesion. The mutations identified in MAPRE2 all reside within the calponin homology domain, responsible to track and interact with the plus-end tip of growing microtubules, and previous data showed that altered dosage of MAPRE2 resulted in abnormal branchial arch patterning in zebrafish. In this study, we developed patient derived induced pluripotent stem cell lines for MAPRE2, together with isogenic controls, using CRISPR/Cas9 technology, and differentiated them towards neural crest cells with cranial identity. We show that changes in MAPRE2 lead to alterations in neural crest migration in vitro but also in vivo, following xenotransplantation of neural crest progenitors into developing chicken embryos. In addition, we provide evidence that changes in focal adhesion might underlie the altered cell motility of the MAPRE2 mutant cranial neural crest cells. Our data provide evidence that MAPRE2 is involved in cellular migration of cranial neural crest and offers critical insights into the mechanism underlying the craniofacial dysmorphisms and cleft palate present in CSC-KT patients. This adds the CSC-KT disorder to the growing list of neurocristopathies.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 534-534
Author(s):  
Kumkum Ganguly ◽  
Tatiana Krasik ◽  
Khalil Bdeir ◽  
Douglas B. Cines ◽  
Vladimir R. Muzykantov ◽  
...  

Abstract Conjugation of plasminogen activators (PA) to carrier red blood cells (RBC) generates a new agent (RBC/PA), which selectively lyses nascent blood clots. In this work, we studied two types of RBC/PA conjugates, carrying Alteplase (tissue type plasminogen activator, tPA) or Reteplase (an engineered form of tPA, Ret). Compared to non-conjugated 125I-PA counterparts, both 125I-tPA and 125I-Ret coupled to 51Cr-RBC via biocompatible biotin-streptavidin cross-linker showed markedly prolonged circulation in rats and mice. Despite slightly faster blood clearance, RBC/tPA retained significantly higher fibrinolytic activity in circulation than RBC/Ret. In part, the higher fibrinolytic activity of RBC/tPA vs RBC/Ret in the circulation was due to its lessened susceptibility to plasma inhibitors. Analysis of amidolytic activity of RBC-coupled vs free tPA and Ret using chromogenic substrates in vitro revealed that coupling to RBC rendered Ret, but not tPA, insensitive to stimulation of fibrinolytic activity by fibrin. In vitro binding assay in cultural wells showed that RBC/tPA specifically binds to fibrin clot (6±0.2x104 RBC/tPA bound per well vs. 1±0.4x104 RBC/Ret or 7.3±0.6x103 naive RBC). RBC/tPA also bind specifically to immobilized fibrinogen and plasminogen (8±2x104 and 2±0.4x104 RBC/well), but not to non-cleavable plasminogen, collagen, fibronectin or thrombospondin (<1.1±0.3x103RBC/well). Neither RBC/Ret nor naïve RBC bind to these proteins (<1.1±0.2x103 RBC/well). Therefore, RBC/PA complexes display a considerable functional diversity, a result of interplay between the pharmacokinetic features offered by carrier RBC, individual features of a given PA and alterations of the latter caused by RBC coupling. In theory, this diversity may enhance flexibility and utility of potential applications of RBC/PA for thromboprophylaxis.


2008 ◽  
Vol 20 (2) ◽  
pp. 320 ◽  
Author(s):  
Thomas Papanikolaou ◽  
Georgios S. Amiridis ◽  
Ioannis Dimitriadis ◽  
Emmanuel Vainas ◽  
Constantinos A. Rekkas

In the present study, four experiments were conducted to investigate the possible effects of plasminogen activators (urokinase-type plasminogen activator (u-PA) and tissue-type plasminogen activator (t-PA)), plasmin, and a plasmin inhibitor (epsilon-aminocaproic acid (ϵ-ACA)) on different stages of bovine in vitro embryo production (IVP). The concentrations of these modifiers in IVP media were conditioned according to the plasminogen activator activity of bovine preovulatory follicular fluid. Media were modified in a single phase of IVP with an 18 h or 24 h incubation for in vitro maturation (IVM) and a 24 h or 48 h incubation for the IVF or in vitro culture (IVC), respectively. After IVM the oocytes were either fixed and stained or underwent IVF and IVC. The main findings were: (1) plasmin added to the 18 h IVM medium increased maturation rate without affecting fertilisation or embryo development rates; (2) t-PA added to the IVF medium significantly increased cleavage; (3) u-PA added to the IVC medium significantly increased embryo development rates; (4) the efficiency of all phases of IVP was reduced after the addition of ϵ-ACA; and (5) plasminogen addition had no effect in any IVP phase tested. We conclude that the members of the plasminogen activator–plasmin system contribute in different ways to bovine IVM, IVF and IVC.


1988 ◽  
Vol 59 (02) ◽  
pp. 310-315 ◽  
Author(s):  
P W Koppert ◽  
E Hoegee-de Nobel ◽  
W Nieuwenhuizen

SummaryWe have developed a sandwich-type enzyme immunoassay (EIA) for the quantitation of fibrin degradation products (FbDP) in plasma with a time-to-result of only 45 minutes.* The assay is based on the combination of the specificities of two monoclonal antibodies (FDP-14 and DD-13), developed in our institute. FDP-14, the capture antibody, binds both fibrinogen degradation products (FbgDP) and FbDP, but does not react with the parent fibrin(ogen) molecules. It has its epitope in the E-domain of the fibrinogen molecule on the Bβ-chain between amino acids 54-118. Antibody DD-13 was raised using D-dimer as antigen and is used as a tagging antibody, conjugated with horse-radish peroxidase. A strong positive reaction is obtained with a whole blood clot lysate (lysis induced by tissue-type plasminogen activator) which is used as a standard. The EIA does virtually not detect FbgDP i. e. purified fragments X, Y, or FbgDP generated in vitro in plasma by streptokinase treatment. This indicates that the assay is specific for fibrin degradation products.We have successfully applied this assay to the plasma of patients with a variety of diseased states. In combination with the assay previously developed by us for FbgDP and for the total amount of FbgDP + FbDP (TDP) in plasma, we are now able to study the composition of TDP in patients plasma in terms of FbgDP and FbDP.


1988 ◽  
Vol 60 (02) ◽  
pp. 247-250 ◽  
Author(s):  
H R Lijnen ◽  
L Nelles ◽  
B Van Hoef ◽  
F De Cock ◽  
D Collen

SummaryRecombinant chimaeric molecules between tissue-type plasminogen activator (t-PA) and single chain urokinase-type plasminogen activator (scu-PA) or two chain urokinase-type plasminogen activator (tcu-PA) have intact enzymatic properties of scu-PA or tcu-PA towards natural and synthetic substrates (Nelles et al., J Biol Chem 1987; 262: 10855-10862). In the present study, we have compared the reactivity with inhibitors of both the single chain and two chain variants of recombinant u-PA and two recombinant chimaeric molecules between t-PA and scu-PA (t-PA/u-PA-s: amino acids 1-263 of t-PA and 144-411 of u-PA; t-PA/u-PA-e: amino acids 1-274 of t-PA and 138-411 of u-PA). Incubation with human plasma in the absence of a fibrin clot for 3 h at 37° C at equipotent concentrations (50% clot lysis in 2 h), resulted in significant fibrinogen breakdown (to about 40% of the normal value) for all two chain molecules, but not for their single chain counterparts. Preincubation of the plasminogen activators with plasma for 3 h at 37° C, resulted in complete inhibition of the fibrinolytic potency of the two chain molecules but did not alter the potency of the single chain molecules. Inhibition of the two chain molecules occurred with a t½ of approximately 45 min. The two chain variants were inhibited by the synthetic urokinase inhibitor Glu-Gly-Arg-CH2CCl with apparent second-order rate constants of 8,000-10,000 M−1s−1, by purified α2-antiplasmin with second-order rate constants of about 300 M−1s−1, and by plasminogen activator inhibitor-1 (PAI-1) with second-order rate constants of approximately 2 × 107 M−1s−1.It is concluded that the reactivity of single chain and two chain forms of t-PA/u-PA chimaers with inhibitors is very similar to that of the single and two chain forms of intact u-PA.


1989 ◽  
Vol 61 (03) ◽  
pp. 497-501 ◽  
Author(s):  
E Seifried ◽  
P Tanswell ◽  
D Ellbrück ◽  
W Haerer ◽  
A Schmidt

SummaryPharmacokinetics and systemic effects of recombinant tissue type plasminogen activator (rt-PA) were determined during coronary thrombolysis in 12 acute myocardial infarction patients using a consecutive intravenous infusion regimen. Ten mg rt-PA were infused in 2 minutes resulting in a peak plasma concentration (mean ±SD) of 3310±950 ng/ml, followed by 50 mg in 1 h and 30 mg in 1.5 h yielding steady state plasma levels of. 2210±470 nglml and 930±200 ng/ml, respectively. All patients received intravenous heparin. Total clearance of rt-PA was 380±74 ml/min, t,½α was 3.6±0.9 min and t,½β was 16±5.4 min.After 90 min, in plasma samples containing anti-rt-PA-IgG to inhibit in vitro effects, fibrinogen was decreased to 54%, plasminogen to 52%, α2-antiplasmin to 25%, α2-macroglobulin to 90% and antithrombin III to 85% of initial values. Coagulation times were prolonged and fibrin D-dimer concentrations increased from 0.40 to 2.7 μg/ml. It is concluded that pharmacokinetics of rt-PA show low interpatient variability and that its short mean residence time in plasma allows precise control of therapy. Apart from its moderate effect on the haemostatic system, rt-PA appears to lyse a fibrin pool in addition to the coronary thrombus.


1987 ◽  
Vol 58 (03) ◽  
pp. 921-926 ◽  
Author(s):  
E Seifried ◽  
P Tanswell

SummaryIn vitro, concentration-dependent effects of rt-PA on a range of coagulation and fibrinolytic assays in thawed plasma samples were investigated. In absence of a fibrinolytic inhibitor, 2 μg rt-PA/ml blood (3.4 μg/ml plasma) caused prolongation of clotting time assays and decreases of plasminogen (to 44% of the control value), fibrinogen (to 27%), α2-antiplasmin (to 5%), FV (to 67%), FVIII (to 41%) and FXIII (to 16%).Of three inhibitors tested, a specific polyclonal anti-rt-PA antibody prevented interferences in all fibrinolytic and most clotting assays. D-Phe-Pro-Arg-CH2Cl (PPACK) enabled correct assays of fibrinogen and fibrinolytic parameters but interfered with coagulometric assays dependent on endogenous thrombin generation. Aprotinin was suitable only for a restricted range of both assay types.Most in vitro effects were observed only with rt-PA plasma concentrations in excess of therapeutic values. Nevertheless it is concluded that for clinical application, collection of blood samples on either specific antibody or PPACK is essential for a correct assessment of in vivo effects of rt-PA on the haemostatic system in patients undergoing fibrinolytic therapy.


1994 ◽  
Vol 72 (06) ◽  
pp. 906-911 ◽  
Author(s):  
D C Rijken ◽  
E Groeneveld ◽  
M M Barrett-Bergshoeff

SummaryBM 06.022 is a non-glycosylated mutant of human tissue-type plasminogen activator (t-PA) comprising only the kringle-2 and proteinase domains. The in vivo half-life of BM 06.022 antigen is 4- to 5-fold longer than that of t-PA antigen. The in vitro half-life of the activity of BM 06.022 at therapeutic concentrations in plasma is shorter than that of t-PA. In this study the inactivation of BM 06.022 in plasma was further investigated.Varying concentrations of BM 06.022 were incubated in plasma for 0-150 min. Activity assays on serial samples showed a dose-dependent decline of BM 06.022 activity with a half-life from 72 min at 0.3 μg/ml to 38 min at 10 μg/ml. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) followed by fibrin autography showed the generation of several BM 06.022-complexes. These complexes could be completely precipitated with antibodies against Cl-inactivator, α2-antiplasmin and α1-antitrypsin.During the incubation of BM 06.022 in plasma, plasmin was generated dose-dependently as revealed by varying degrees of a2-anti-plasmin consumption and fibrinogen degradation. SDS-PAGE and immunoblotting showed that single-chain BM 06.022 was rapidly (i. e. within 45 min) converted into its two-chain form at concentrations of 5 μg/ml BM 06.022 and higher.In conclusion, BM 06.022 at therapeutic concentrations in plasma was inactivated by Cl-inactivator, a2-antiplasmin and a j-antitrypsin. The half-life of the activity decreased at increasing BM 06.022 concentrations, probably as a result of the generation of two-chain BM 06.022 which may be inactivated faster than the single-chain form.


1993 ◽  
Vol 70 (05) ◽  
pp. 867-872 ◽  
Author(s):  
Dingeman C Rijken ◽  
Gerard A W de Munk ◽  
Annie F H Jie

SummaryIn order to define the possible effects of heparin on the fibrinolytic system under physiological conditions, we studied the interactions of this drug with plasminogen and its activators at various ionic strengths. As reported in recent literature, heparin stimulated the activation of Lys-plasminogen by high molecular weight (HMW) and low molecular weight (LMW) two-chain urokinase-type plasminogen activator (u-PA) and two-chain tissue-type plasminogen activator (t-PA) 10- to 17-fold. Our results showed, however, that this stimulation only occurred at low ionic strength and was negligible at a physiological salt concentration. Direct binding studies were performed using heparin-agarose column chromatography. The interaction between heparin and Lys-plasminogen appeared to be salt sensitive, which explains at least in part why heparin did not stimulate plasminogen activation at 0.15 M NaCl. The binding of u-PA and t-PA to heparinagarose was less salt sensitive. Results were consistent with heparin binding sites on both LMW u-PA and the amino-terminal part of HMW u-PA. Single-chain t-PA bound more avidly than two-chain t-PA. The interactions between heparin and plasminogen activators can occur under physiological conditions and may modulate the fibrinolytic system.


Sign in / Sign up

Export Citation Format

Share Document