scholarly journals Selective dispersal of avian rhombomere cells in orthotopic and heterotopic grafts

Development ◽  
1993 ◽  
Vol 118 (2) ◽  
pp. 527-538 ◽  
Author(s):  
S. Guthrie ◽  
V. Prince ◽  
A. Lumsden

During hindbrain development, cells become segregated into segmental groups, rhombomeres, by mechanisms that are presently unknown. One contributory factor early in development may be an alternating periodicity in cell surface properties down the neuraxis. This possibility was previously suggested by experiments in which tissue from different segmental levels was apposed in the absence of a boundary. New boundaries were regenerated only when rhombomeres from adjacent positions or positions three rhombomeres distant from one another were apposed. Combinations of two odd-numbered or two even-numbered rhombomeres usually failed to generate a boundary. In order to pursue this phenomenon to the cellular level, we have used two approaches, both involving donor-to-host transplantation. First, quail rhombomeres were grafted at various hindbrain levels of a chick host. Apposition of rhombomere 4 (r4) with r3 was concomitant with negligible cell mixing across the interface. By contrast, combinations of r3 with r5 or with r3 tissue led to cell mixing that was more extensive in combinations of identical rhombomeres (r3 with r3) than between two alternate ones (r3 with r5). Secondly, we grafted small pieces of fluorescently prelabelled chick rhombomere tissue at various hindbrain levels of chick hosts. In most cases, cells dispersed widely when transplanted orthopically or two segments distant from that of their origin. Cells transplanted into an adjacent segment, however, showed a tendency to remain undispersed. Among the different graft combinations, furthermore, there was a variation in the extent of dispersal that showed an additional level of complexity not revealed in boundary regeneration experiments. The possibility is raised that the early partitioning of rhombomeres involves a hierarchy in the adhesive preferences of cell-cell interactions along the neuraxis.

Anaerobe ◽  
2014 ◽  
Vol 28 ◽  
pp. 212-215 ◽  
Author(s):  
Valérie Andriantsoanirina ◽  
Anne-Claire Teolis ◽  
Liu Xin Xin ◽  
Marie Jose Butel ◽  
Julio Aires

2002 ◽  
Vol 70 (8) ◽  
pp. 4687-4691 ◽  
Author(s):  
Stefan Moese ◽  
Matthias Selbach ◽  
Thomas F. Meyer ◽  
Steffen Backert

ABSTRACT Infection with cag + but not cag-negative Helicobacter pylori leads to the formation of large homotypic aggregates of macrophage-like cells. Intracellular adhesion molecule 1 is up-regulated and recruited to the cell surface of infected cells and mediates the aggregation via lymphocyte function-associated molecule 1. This signaling may regulate cell-cell interactions and inflammatory responses.


2014 ◽  
Vol 94 (2) ◽  
pp. 272-289 ◽  
Author(s):  
Alexandra Faulds‐Pain ◽  
Susan M. Twine ◽  
Evgeny Vinogradov ◽  
Philippa C. R. Strong ◽  
Anne Dell ◽  
...  

Author(s):  
W. Mark Saltzman

The external surface of the cell consists of a phospholipid bilayer which carries a carbohydrate-rich coat called the glycocalyx; ionizable groups within the glycocalyx, such as sialic acid (N-acetyl neuraminate), contribute a net negative charge to the cell surface. Many of the carbohydrates that form the glycocalyx are bound to membrane-associated proteins. Each of these components— phospholipid bilayer, carbohydrate-rich coat, membrane-associated protein—has distinct physicochemical characteristics and is abundant. Plasma membranes contain ∼50% protein, ∼45% lipid, and ∼5% carbohydrate by weight. Therefore, each component influences cell interactions with the external environment in important ways. Cells can become attached to surfaces. The surface of interest may be geometrically complex (for example, the surface of another cell, a virus, a fiber, or an irregular object), but this chapter will focus on adhesion between a cell and a planar surface. The consequences of cell–cell adhesion are considered further in Chapter 8 (Cell Aggregation and Tissue Equivalents) and Chapter 9 (Tissue Barriers to Molecular and Cellular Transport). The consequences of cell–substrate adhesion are considered further in Chapter 7 (Cell Migration) and Chapter 12 (Cell Interactions with Polymers). Since the growth and function of many tissue-derived cells required attachment and spreading on a solid substrate, the events surrounding cell adhesion are fundamentally important. In addition, the strength of cell adhesion is an important determinant of the rate of cell migration, the kinetics of cell–cell aggregation, and the magnitude of tissue barriers to cell and molecule transport. Cell adhesion is therefore a major consideration in the development of methods and materials for cell delivery, tissue engineering, and tissue regeneration. The most stable and versatile mechanism for cell adhesion involves the specific association of cell surface glycoproteins, called receptors, and complementary molecules in the extracellular space, called ligands. Ligands may exist freely in the extracellular space, they may be associated with the extracellular matrix, or they may be attached to the surface of another cell. Cell–cell adhesion can occur by homophilic binding of identical receptors on different cells, by heterophilic binding of a receptor to a ligand expressed on the surface of a different cell, or by association of two receptors with an intermediate linker. Cell–matrix adhesion usually occurs by heterophilic binding of a receptor to a ligand attached to an insoluble element of the extracellular matrix.


2009 ◽  
Vol 72 (8) ◽  
pp. 1699-1704 ◽  
Author(s):  
SUPAYANG PIYAWAN VORAVUTHIKUNCHAI ◽  
SAKOL SUWALAK

The effects of Quercus infectoria (family Fagaceae) nutgalls on cell surface properties of Shiga toxigenic Escherichia coli (STEC) were investigated with an assay of microbial adhesion to hydrocarbon. The surface of bacterial cells treated with Q. infectoria exhibited a higher level of cell surface hydrophobicity (CSH) toward toluene than did the surface of untreated cells. With 50% ethanolic extract, the CSH of the three strains of STEC O157:H7 treated with 4× MIC of the extract resulted in moderate or strong hydrophobicity, whereas at 2× MIC and MIC, the CSH of only one strain of E. coli O157:H7 was significantly affected. The 95% ethanolic extract had a significant effect on CSH of all three strains at both 4× MIC and 2× MIC but not at the MIC. The effect on bacterial CSH was less pronounced with the other STEC strains. At 4× MIC, the 50% ethanolic extract increased the CSH of all non-O157 STEC strains significantly. At 2× MIC and 4× MIC, the 95% ethanolic extract affected the CSH of E. coli O26:H11 significantly but did not affect E. coli O111:NM or E. coli O22. Electron microscopic examination revealed the loss of pili in the treated cells. The ability of Q. infectoria extract to modify hydrophobic domains enables this extract to partition the lipids of the bacterial cell membrane, rendering the membrane more permeable and allowing leakage of ions and other cell contents, which leads to cell death. Further studies are required to evaluate the effects of Q. infectoria extract in food systems or in vivo and provide support for the use of this extract as a food additive for control of these STEC pathogens.


Sign in / Sign up

Export Citation Format

Share Document