scholarly journals Internalization of prolactin receptor and prolactin in transfected cells does not involve nuclear translocation

1997 ◽  
Vol 110 (9) ◽  
pp. 1123-1132 ◽  
Author(s):  
M. Perrot-Applanat ◽  
O. Gualillo ◽  
H. Buteau ◽  
M. Edery ◽  
P.A. Kelly

Prolactin (PRL) interacts with a specific, well characterized plasma membrane receptor (PRLR) that is coupled to signal transduction pathways involving Jak2, Fyn, and MAP kinases, and signal transducers and activators of transcription (STAT). Although a few previous studies have indicated nuclear translocation of PRL in IL-2 stimulated T lymphocytes, PRL-dependent Nb2 lymphoma cell lines and 235–1 lactotrophs, the mechanisms of nuclear targeting remain unknown and conflicting results have been reported concerning the putative nuclear translocation of the PRLR. We therefore decided to investigate nuclear translocation of PRLR and PRL in various cell lines transfected with an expression plasmid encoding PRLR, using confocal laser microscopy. We have constructed various cDNAs of the long and short forms of the rat PRLR containing an oligonucleotide encoding a Flag epitope inserted either just before the N-terminal amino acid or in the C-terminal end of the mature receptor (named N-terminal or C-terminal Flag-tagged PRLR). The corresponding receptors function as the PRLR in transfected cells: they are expressed at the plasma membrane and in compartments of the secretory pathway, they bind PRL with normal affinity (Kd= 4x10(−10) M) and have the same capacity to stimulate the transcriptional activity of a milk protein (beta-casein) gene as wild-type PRLR. In addition, the tagged receptors are much more efficiently immunodetected using anti-Flag antibodies, as compared to anti-PRL antibodies (U5 or U6). Immunofluorescence combined with detailed confocal laser microscopy showed that addition of PRL (0 to 12 hours) to COS-7, CHO and NIH-3T3 transfected fibroblasts induces rapid internalization of the receptor (long form), without any translocation to the nucleus. Using PRL-R tagged both in the N-terminal or C-terminal regions of the mature receptor excludes the possibility of a cleaved fragment which could have been subsequently imported into the nucleus. An absence of nuclear translocation of PRLR was also observed in a 293 cell line stably expressing the receptor, and in physiological targets for PRL, i.e. in Nb2 lymphoma cells expressing the Nb2 form of the receptor or in BGME mammary gland epithelial cells upon overexpression of a Flag-tagged PRLR. Similarly, the short form of the PRLR was not detected in nuclei of transfected COS cells upon PRL treatment. Clearly, our results provide evidence that internalization of the plasma membrane PRLR does not lead to nuclear translocation of the receptor, or part of it, in most fibroblasts and epithelial cells at physiological concentrations of PRL. Also, in co-localization experiments, PRL was internalized without nuclear translocation. Activation of STATs transcription factors and MAP kinases, as well as translocation of these proteins to the nucleus following their phosphorylation, probably remains the intracellular mechanism coupling stimulation to nuclear events.

2009 ◽  
Vol 8 (4) ◽  
pp. 152
Author(s):  
C. Wiesner ◽  
A. Salzer ◽  
R. Kiesslich ◽  
C. Hampel ◽  
R. Gillitzer ◽  
...  

2008 ◽  
Vol 41 (3) ◽  
pp. 290-297 ◽  
Author(s):  
M. Goetz ◽  
S. Thomas ◽  
A. Heimann ◽  
P. Delaney ◽  
C. Schneider ◽  
...  

2011 ◽  
Vol 57 (2) ◽  
pp. 451-457 ◽  
Author(s):  
Heiko Pohl ◽  
Barbara T. Tanczos ◽  
Birgit Rudolph ◽  
Alexander Meining ◽  
Ahmed C. Khalifa ◽  
...  

2001 ◽  
Vol 114 (9) ◽  
pp. 1643-1653 ◽  
Author(s):  
Z. Dastoor ◽  
J.L. Dreyer

Recent studies indicating a role of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in apoptosis or oxidative stress has been reported. Using confocal laser-scanning microscopy, we have investigated the cellular distribution of GAPDH in central nervous system (CNS)-derived cells (neuroblastoma mNB41A3), in non-CNS derived cells (R6 fibroblast) and in an apoptosis-resistant Bcl2 overexpressing cell line (R6-Bcl2). Induction of apoptosis by staurosporine or MG132 and oxidative stress by H(2)O(2) or FeCN enhanced the nuclear translocation of endogenous GAPDH in all cell types, as detected by immunocytochemistry. In apoptotic cells, GAPDH expression is three times higher than in non-apoptotic cells. Consistent with a role for GAPDH in apoptosis, overexpression of a GAPDH-green fluorescent protein (GAPDH-GFP) hybrid increased nuclear import of GAPDH-GFP into transfected cells and the number of apoptotic cells, and made them more sensitive to agents that induce apoptosis. Bcl2 overexpression prevents nuclear translocation of GAPDH and apoptosis in untransfected cells, but not in transfected cells that overexpress GAPDH-GFP. Our observations indicate that nuclear translocation of GAPDH may play a role in apoptosis and oxidative stress, probably related to the activity of GAPDH as a DNA repair enzyme or as a nuclear carrier for pro-apoptotic molecules.


1989 ◽  
Vol 504 (1) ◽  
pp. 159-160 ◽  
Author(s):  
Arno Villringer ◽  
Roman L. Haberl ◽  
Ulrich Dirnagl ◽  
Franziska Anneser ◽  
Michael Verst ◽  
...  

2020 ◽  
Vol 8 (3) ◽  
pp. 71
Author(s):  
Masaaki Minami ◽  
Hiroshi Takase ◽  
Masayo Taira ◽  
Toshiaki Makino

Streptococcus mutans, a bacterium that causes dental plaques, forms a biofilm on tooth surfaces. This biofilm can cause gingivitis by stimulating the gingival margin. However, there is no established treatment for biofilm removal. Hainosan (Painongsan), a traditional Japanese Kampo formula, has been used to treat gingivitis. Therefore, we investigated the biofilm suppressive effects of the hainosan extract (HNS) and its components on S. mutans. We conducted scanning electron microscopy and confocal laser microscopy analyses to clarify the anti-biofilm activities of HNS and its crude drugs. We also performed a quantitative RT-PCR assay to assess the biofilm-related gene expression. HNS showed a significant dose-dependent suppressive effect on biofilm formation. Both the scanning electron microscopy and confocal laser microscopy analyses also revealed the significant inhibitory effects of the extract on biofilm formation. Transmission electron microscopy analysis showed that HNS disrupted the surface of the bacterial wall. Furthermore, HNS reduced the hydrophobicity of the bacteria, and suppressed the mRNA expression of β-glucosyltransferase (gtfB), glucosyltransferase-SI (gtfC), and fructosyltransferase (ftf). Among the constituents of hainosan, the extract of the root of Platycodon grandiflorum (PG) showed the strongest biofilm suppression effect. Platycodin D, one of the constituent natural compounds of PG, inhibited S. mutans-associated biofilm. These findings indicate that hainosan eliminates dental plaques by suppressing biofilm formation by S. mutans.


Sign in / Sign up

Export Citation Format

Share Document