Continuous Nucleolar DNA Synthesis in Late-Interphase Nuclei of Physarum Polycephalum after Transplantation into Postmitotic Plasmodia

1974 ◽  
Vol 15 (1) ◽  
pp. 131-143
Author(s):  
E. GUTTES

In the myxomycete, Physarum polycephalum, nuclear DNA synthesis commences immediately upon completion of mitosis. While the synthesis of extranucleolar DNA is completed within a few hours, nucleolar DNA synthesis occurs during most of the S-phase and the entire G2 phase of the intermitotic period. When large (polyploid), late-interphase nuclei were allowed to bypass mitosis by transplantation into recipient plasmodia which were at early interphase and which belonged to a strain having smaller nuclei, the nucleolar DNA of the transplanted nuclei continued to be labelled (autoradiographs) after incubation of the host plasmodia with [3H]thymidine until they entered prophase along with the nuclei of the host plasmodium, approximately one intermitotic period later. This labelling was DNase-sensitive and RNase-resistant. When late-interphase nuclei were labelled with [3H]thymidine just prior to transplantation, there was no decrease of label after transplantation during the additional intermitotic period. We conclude from these experiments that there is no obligatory alternation between nucleolar DNA duplication and mitosis in Physarum polycephalum and that nucleolar DNA replication might exhibit amplification during an experimentally prolonged intermitotic period.

1966 ◽  
Vol 31 (3) ◽  
pp. 577-583 ◽  
Author(s):  
J. E. Cummins ◽  
H. P. Rusch

Actidione (cycloheximide), an antibiotic inhibitor of protein synthesis, blocked the incorporation of leucine and lysine during the S phase of Physarum polycephalum. Actidione added during the early prophase period in which mitosis is blocked totally inhibited the initiation of DNA synthesis. Actidione treatment in late prophase, which permitted mitosis in the absence of protein synthesis, permitted initiation of a round of DNA replication making up between 20 and 30% of the unreplicated nuclear DNA. Actidione treatment during the S phase permitted a round of replication similar to the effect at the beginning of S. The DNA synthesized in the presence of actidione was replicated semiconservatively and was stable through at least the mitosis following antibiotic removal. Experiments in which fluorodeoxyuridine inhibition was followed by thymidine reversal in the presence of actidione suggest that the early rounds of DNA replication must be completed before later rounds are initiated.


1968 ◽  
Vol 37 (3) ◽  
pp. 761-772 ◽  
Author(s):  
Sophie Guttes ◽  
Edmund Guttes

Nuclei in G2 phase of the slime mold Physarum polycephalum, when transplanted, by plasmodial coalescence, into an S-phase plasmodium, failed to start another round of DNA synthesis. In the reciprocal combination, S-phase nuclei in a G2-phase host continued DNA synthesis for several hours without appreciable decrease in rate. It is suggested that the beginning of DNA replication is determined by an event, either during or shortly after mitosis, which renders the chromosomes structurally competent for DNA replication.


1969 ◽  
Vol 43 (2) ◽  
pp. 229-236 ◽  
Author(s):  
Edmund Guttes ◽  
Sophie Guttes

In the myxomycete, Physarum polycephalum, the bulk of nuclear DNA replication occurs during a period of a few hours immediately following upon mitosis. During the remainder of the intermitotic period, incorporation of thymidine-3H continues at a low rate in the region of the nucleolus (radioautographs). A few nuclei incorporated thymidine-3H into the extranucleolar chromatin at a high rate at all times of the intermitotic period. These nuclei were exceptionally large and they frequently contained several small nucleoli of different sizes rather than the one, central nucleolus which is characteristic of a normal interphase nucleus.


1975 ◽  
Vol 18 (1) ◽  
pp. 27-39
Author(s):  
H. Fouquet ◽  
R. Bohme ◽  
R. Wick ◽  
H.W. Sauer ◽  
K. Scheller

Hydroxyurea, at concentrations of 40–60 mM, selectively and effectively blocked incorporation of thymidine into DNA. Inhibition occurred within 5–10 min of application of the agent when DNA synthesis was in progress, while the onset of replication at the beginning of S-phase and DNA synthesis in G2 phase were not affected. Uridine incorporation into TCA-precipitable material, in the presence of hydroxyurea, was significantly (up to 70%) inhibited in early S-phase of the cell cycle. Selective inhibition of RNA synthesis was confirmed for RNA separated into rRNA-rich and poly(A)-rich RNA fractions and analysed by the 2 kinds of DNA-RNA hybridization reactions. Uridine incorporation into poly (A) RNA was also inhibited under conditions where cycloheximide prevented maturation of nascent DNA molecules in early S-phase. We assume that chromatin which is replicating early DNA sequences may be a more competent template for transcription.


1987 ◽  
Vol 7 (5) ◽  
pp. 1933-1937 ◽  
Author(s):  
J J Carrino ◽  
V Kueng ◽  
R Braun ◽  
T G Laffler

During the S phase of the cell cycle, histone gene expression and DNA replication are tightly coupled. In mitotically synchronous plasmodia of the myxomycete Physarum polycephalum, which has no G1 phase, histone mRNA synthesis begins in mid-G2 phase. Although histone gene transcription is activated in the absence of significant DNA synthesis, our data demonstrate that histone gene expression became tightly coupled to DNA replication once the S phase began. There was a transition from the replication-independent phase to the replication-dependent phase of histone gene expression. During the first phase, histone mRNA synthesis appears to be under direct cell cycle control; it was not coupled to DNA replication. This allowed a pool of histone mRNA to accumulate in late G2 phase, in anticipation of future demand. The second phase began at the end of mitosis, when the S phase began, and expression became homeostatically coupled to DNA replication. This homeostatic control required continuing protein synthesis, since cycloheximide uncoupled transcription from DNA synthesis. Nuclear run-on assays suggest that in P. polycephalum this coupling occurs at the level of transcription. While histone gene transcription appears to be directly switched on in mid-G2 phase and off at the end of the S phase by cell cycle regulators, only during the S phase was the level of transcription balanced with the rate of DNA synthesis.


1979 ◽  
Vol 183 (2) ◽  
pp. 477-480 ◽  
Author(s):  
D A F Gillespie ◽  
N Hardman

Clusters of microbubbles, represent probable sites of newly initiated DNA synthesis, were identified in nuclear DNA from Physarum polycephalum by using the electron microscope. Their presence is associated specifically with S-phase. Each microbubble corresponds in size to a replicating segment of DNA about 100-5000 nucleotide residues in length. The DNA structures containing microbubbles are metastable, and revert to native DNA in the presence of moderate concentrations of formamide used to prepare samples for electron microscopy. It is suggested that each cluster of microbubbles may correspond to a unit of replication (a replicon) in Physarum DNA.


1988 ◽  
Vol 91 (3) ◽  
pp. 389-399
Author(s):  
H. Jantzen ◽  
I. Schulze ◽  
M. Stohr

In Acanthamoeba, two different cell types are known. Trophozoites are generated in the mitotic division cycle, whereas cells committed at late G2 phase of the cell cycle develop into cysts in response to starvation. In this paper we study the role of timing of DNA replication in regulating development. The investigation was performed with cultures growing in a non-defined medium (ND cells) that show a high encystation competence and with cultures that have been growing in a chemically defined medium (D cells) for several years and show a low encystation competence. Bivariate DNA/BrdUrd distributions show that ND cells progress through a cycle in which the short replication phase occurs immediately and exclusively after prior completion of mitosis. These cells arrest at late G2 phase of the cell cycle during the stationary stage. In D cells, DNA replication and mitosis seem to be uncoupled, since replication takes place before as well as after mitosis. These cells arrest within their replication phase during the stationary stage. These findings indicate that D cells do not progress into late G2 phase of the cell cycle and hence do not have the competence for commitment. The alternate timing of DNA replication and the low encystation competence of D cells can be reversed by cultivation of these cells in ND medium. Synchronization experiments reveal that late G2 phase ND cells exhibit a low capacity for BrdUrd incorporation and growth after transfer into D medium, whereas ND cells of earlier phases of the cell cycle show premitotic incorporation of BrdUrd into nuclear DNA and growth. These findings suggest on the one hand that premitotic DNA synthesis is a prerequisite for growth of cells in D medium, and that there is a dependence of the induction of premitotic DNA synthesis on the cell cycle, and on the other hand that a reciprocal relationship exists between the capacity of premitotic DNA synthesis and commitment to differentiation.


1987 ◽  
Vol 7 (5) ◽  
pp. 1933-1937
Author(s):  
J J Carrino ◽  
V Kueng ◽  
R Braun ◽  
T G Laffler

During the S phase of the cell cycle, histone gene expression and DNA replication are tightly coupled. In mitotically synchronous plasmodia of the myxomycete Physarum polycephalum, which has no G1 phase, histone mRNA synthesis begins in mid-G2 phase. Although histone gene transcription is activated in the absence of significant DNA synthesis, our data demonstrate that histone gene expression became tightly coupled to DNA replication once the S phase began. There was a transition from the replication-independent phase to the replication-dependent phase of histone gene expression. During the first phase, histone mRNA synthesis appears to be under direct cell cycle control; it was not coupled to DNA replication. This allowed a pool of histone mRNA to accumulate in late G2 phase, in anticipation of future demand. The second phase began at the end of mitosis, when the S phase began, and expression became homeostatically coupled to DNA replication. This homeostatic control required continuing protein synthesis, since cycloheximide uncoupled transcription from DNA synthesis. Nuclear run-on assays suggest that in P. polycephalum this coupling occurs at the level of transcription. While histone gene transcription appears to be directly switched on in mid-G2 phase and off at the end of the S phase by cell cycle regulators, only during the S phase was the level of transcription balanced with the rate of DNA synthesis.


1977 ◽  
Vol 27 (1) ◽  
pp. 81-90
Author(s):  
S.A. Filfilan ◽  
D.C. Sigee

The uptake of tritiated thymine into cells of a heterogeneous population of Prorocentrum micans was investigated using light-microscope and electron-microscope autoradiography. Specificity of thymine uptake into DNA was demonstrated by the specific removal of label from wax-embedded material using DNase and by the high degree of localization of nuclear label to chromosomes in the electron-microscope autoradiographs. All nuclei, including both dividing and non-dividing cells, showed a substantial uptake of label, indicating that nuclear DNA synthesis in Prorocentrum micans is a continuous process. The level of DNA synthesis does show considerable variation, however, with very high levels in some interphase nuclei. The continuous replication of nuclear DNA provides further evidence of dinoflagellate affinity to the prokaryotes, and indicates that Prorocentrum micans is a very primitive eukaryote cell.


1976 ◽  
Vol 22 (3) ◽  
pp. 521-530
Author(s):  
I. Minassian ◽  
L.G. Bell

Light- and electron-microscope autoradiography have been used to follow the incorporation of [3H]thymidine at different stages during the interphase of synchronously growing populations of Amoeba proteus. Two main patterns were found for tritiated thymidine incorporation, i.e. DNA synthesis. The major incorporation was in the central region of the nucleus, but a lesser degree of incorporation occurred in the nucleolar region. The bulk of this nucleolar DNA was found to be late replicating, i.e. it replicated during the G2 phase.


Sign in / Sign up

Export Citation Format

Share Document