scholarly journals Depletion of a Toxoplasma porin leads to defects in mitochondrial morphology and contacts with the ER

2021 ◽  
Author(s):  
Natalia Mallo ◽  
Jana Ovciarikova ◽  
Erica S. Martins-Duarte ◽  
Stephan C. Baehr ◽  
Marco Biddau ◽  
...  

The Voltage Dependent Anion channel (VDAC) is a ubiquitous channel in the outer membrane of the mitochondrion with multiple roles in protein, metabolite and small molecule transport. In mammalian cells, VDAC, as part of a larger complex including the inositol triphosphate receptor, has been shown to have a role in mediating contacts between the mitochondria and endoplasmic reticulum (ER). We identify VDAC of the pathogenic apicomplexan Toxoplasma gondii and demonstrate its importance for parasite growth. We show that VDAC is involved in protein import and metabolite transfer to mitochondria. Further, depletion of VDAC resulted in significant morphological changes of the mitochondrion and ER, suggesting a role in mediating contacts between these organelles in T. gondii.

2020 ◽  
Author(s):  
Natalia Mallo ◽  
Erica S. Martins Duarte ◽  
Stephan C. Baehr ◽  
Marco Biddau ◽  
Jana Ovciarikova ◽  
...  

AbstractThe Voltage Dependent Anion channel (VDAC) is a ubiquitous channel in the outer membrane of the mitochondrion with multiple roles in protein, metabolite and small molecule transport. In mammalian cells, VDAC, as part of a larger complex including the inositol triphosphate receptor, has been shown to have a role in mediating contact between the mitochondria and ER. We identify VDAC of the pathogenic apicomplexan Toxoplasma gondii and demonstrate its importance for parasite growth. We show that VDAC is involved in protein import and metabolite transfer to the mitochondria, but does not appear to modulate calcium (Ca2+) signalling. Further, depletion of VDAC resulted in significant morphological changes of the mitochondrion and ER, suggesting a role in mediating contacts between these organelles in T. gondii.


2017 ◽  
Vol 216 (11) ◽  
pp. 3485-3495 ◽  
Author(s):  
Vivien Krüger ◽  
Thomas Becker ◽  
Lars Becker ◽  
Malayko Montilla-Martinez ◽  
Lars Ellenrieder ◽  
...  

The mitochondrial outer membrane is essential for communication between mitochondria and the rest of the cell and facilitates the transport of metabolites, ions, and proteins. All mitochondrial outer membrane channels known to date are β-barrel membrane proteins, including the abundant voltage-dependent anion channel and the cation-preferring protein-conducting channels Tom40, Sam50, and Mdm10. We analyzed outer membrane fractions of yeast mitochondria and identified four new channel activities: two anion-preferring channels and two cation-preferring channels. We characterized the cation-preferring channels at the molecular level. The mitochondrial import component Mim1 forms a channel that is predicted to have an α-helical structure for protein import. The short-chain dehydrogenase-related protein Ayr1 forms an NADPH-regulated channel. We conclude that the mitochondrial outer membrane contains a considerably larger variety of channel-forming proteins than assumed thus far. These findings challenge the traditional view of the outer membrane as an unspecific molecular sieve and indicate a higher degree of selectivity and regulation of metabolite fluxes at the mitochondrial boundary.


2003 ◽  
Vol 374 (2) ◽  
pp. 393-402 ◽  
Author(s):  
Peter POLČIC ◽  
Michael FORTE

The mechanisms by which pro-apoptotic members of the Bcl-2 family of proteins promote the release of mitochondrial factors like cytochrome c, subsequently activating the apoptotic cascade, or by which anti-apoptotic family members block this release, are still not understood. When expressed in yeast, Bcl-2 family members act directly upon conserved mitochondrial components that correspond to their apoptotic substrates in mammalian cells. Here we describe a system in which the levels of representative pro- and anti-apoptotic members of the Bcl-2 family can be regulated independently in yeast. Using this system, we have focused on the action of the anti-apoptotic family member Bcl-xL, and have defined the quantitative relationships that underlie the antagonistic action of this protein on the lethal consequences of expression of the pro-apoptotic family member Bax. This system has also allowed us to demonstrate biochemically that Bcl-xL has two actions at the level of the mitochondrion. Bcl-xL is able to inhibit the stable integration of Bax into mitochondrial membranes, as well as hinder the action of Bax that does become stably integrated into these membranes. Taken together, our results suggest that both the functional and biochemical actions of Bcl-xL may be based on the ability of this molecule to disrupt the interaction of Bax with a resident mitochondrial target that is required for Bax action. Finally, we confirm that VDAC (voltage-dependent anion channel) is not required for the functional responses observed following the expression of either pro- or anti-apoptotic members of the Bcl-2 family.


2001 ◽  
Vol 152 (2) ◽  
pp. 237-250 ◽  
Author(s):  
Shigeomi Shimizu ◽  
Yosuke Matsuoka ◽  
Yasuo Shinohara ◽  
Yoshihiro Yoneda ◽  
Yoshihide Tsujimoto

Through direct interaction with the voltage-dependent anion channel (VDAC), proapoptotic members of the Bcl-2 family such as Bax and Bak induce apoptogenic cytochrome c release in isolated mitochondria, whereas BH3-only proteins such as Bid and Bik do not directly target the VDAC to induce cytochrome c release. To investigate the biological significance of the VDAC for apoptosis in mammalian cells, we produced two kinds of anti-VDAC antibodies that inhibited VDAC activity. In isolated mitochondria, these antibodies prevented Bax-induced cytochrome c release and loss of the mitochondrial membrane potential (Δψ), but not Bid-induced cytochrome c release. When microinjected into cells, these anti-VDAC antibodies, but not control antibodies, also prevented Bax-induced cytochrome c release and apoptosis, whereas the antibodies did not prevent Bid-induced apoptosis, indicating that the VDAC is essential for Bax-induced, but not Bid-induced, apoptogenic mitochondrial changes and apoptotic cell death. In addition, microinjection of these anti-VDAC antibodies significantly inhibited etoposide-, paclitaxel-, and staurosporine-induced apoptosis. Furthermore, we used these antibodies to show that Bax- and Bak-induced lysis of red blood cells was also mediated by the VDAC on plasma membrane. Taken together, our data provide evidence that the VDAC plays an essential role in apoptogenic cytochrome c release and apoptosis in mammalian cells.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hadar Klapper-Goldstein ◽  
Ankit Verma ◽  
Sigal Elyagon ◽  
Roni Gillis ◽  
Michael Murninkas ◽  
...  

AbstractThe voltage-dependent anion channel 1 (VDAC1) is a key player in mitochondrial function. VDAC1 serves as a gatekeeper mediating the fluxes of ions, nucleotides, and other metabolites across the outer mitochondrial membrane, as well as the release of apoptogenic proteins initiating apoptotic cell death. VBIT-4, a VDAC1 oligomerization inhibitor, was recently shown to prevent mitochondrial dysfunction and apoptosis, as validated in mouse models of lupus and type-2 diabetes. In the present study, we explored the expression of VDAC1 in the diseased myocardium of humans and rats. In addition, we evaluated the effect of VBIT-4 treatment on the atrial structural and electrical remodeling of rats exposed to excessive aldosterone levels. Immunohistochemical analysis of commercially available human cardiac tissues revealed marked overexpression of VDAC1 in post-myocardial infarction patients, as well as in patients with chronic ventricular dilatation\dysfunction. In agreement, rats exposed to myocardial infarction or to excessive aldosterone had a marked increase of VDAC1 in both ventricular and atrial tissues. Immunofluorescence staining indicated a punctuated appearance typical for mitochondrial-localized VDAC1. Finally, VBIT-4 treatment attenuated the atrial fibrotic load of rats exposed to excessive aldosterone without a notable effect on the susceptibility to atrial fibrillation episodes induced by burst pacing. Our results indicate that VDAC1 overexpression is associated with myocardial abnormalities in common pathological settings. Our data also indicate that inhibition of the VDAC1 can reduce excessive fibrosis in the atrial myocardium, a finding which may have important therapeutic implications. The exact mechanism\s of this beneficial effect need further studies.


2012 ◽  
Vol 8 (3) ◽  
pp. 446-449 ◽  
Author(s):  
Nadine Flinner ◽  
Enrico Schleiff ◽  
Oliver Mirus

The eukaryotic porin superfamily consists of two families, voltage-dependent anion channel (VDAC) and Tom40, which are both located in the mitochondrial outer membrane. In Trypanosoma brucei , only a single member of the VDAC family has been described. We report the detection of two additional eukaryotic porin-like sequences in T. brucei . By bioinformatic means, we classify both as putative VDAC isoforms.


Sign in / Sign up

Export Citation Format

Share Document