CARDIOVASCULAR RESPONSES TO SCYLIORHININ I AND II IN THE RAINBOW TROUT, ONCORHYNCHUS MYKISS, IN VIVO AND IN VITRO

1994 ◽  
Vol 191 (1) ◽  
pp. 155-166 ◽  
Author(s):  
J Kagstrom ◽  
M Axelsson ◽  
S Holmgren

Changes in cardiac output, heart rate, dorsal aortic blood pressure and coeliac artery blood flow were measured in unrestrained rainbow trout, Oncorhynchus mykiss, following injections of the elasmobranch tachykinins scyliorhinin I and II. The resistance in the coeliac vascular bed and the total systemic vasculature were calculated from blood pressure and flow. In addition, isolated tails were perfused to investigate the effect of the peptides on the somatic vasculature. Scyliorhinin I (SCY I) produced a biphasic change in the coeliac vascular resistance: an initial decrease was followed by an increase. The decrease in coeliac vascular resistance was accompanied by a decrease in the total systemic vascular resistance, leading to an increased cardiac output. The ensuing increase in coeliac vascular resistance caused a slight increase in blood pressure. In the perfused tail, SCY I produced a marked increase in the somatic vascular resistance. Scyliorhinin II (SCY II) decreased the systemic vascular resistance, causing an increase in cardiac output. SCY II also caused a late increase in the coeliac vascular resistance, which led to hypertension and bradycardia. In vitro, SCY II produced a biphasic response in which an initial decrease in the somatic resistance was followed by a larger increase. The results demonstrate that exogenous SCY I and II are vasoactive peptides that act by different mechanisms in the rainbow trout cardiovascular system. Their actions also differ from the actions of substance P previously observed in the cod, Gadus morhua, and possibly involve a neural reflex.

1999 ◽  
Vol 202 (16) ◽  
pp. 2177-2190 ◽  
Author(s):  
S.F. Perry ◽  
R. Fritsche ◽  
T.M. Hoagland ◽  
D.W. Duff ◽  
K.R. Olson

Adult freshwater rainbow trout (Oncorhynchus mykiss) were exposed acutely (approximately 20 min) in a stepwise manner to increasing levels of environmental carbon dioxide ranging between 1.7 and 9.0 mmHg (0.23-1.2 kPa). Experiments were performed to examine, for the first time, the influence of hypercapnic acidosis on aspects of cardiovascular physiology including blood pressure, cardiac output and vascular resistance. Fish displayed dose (water CO(2) partial pressure) -dependent increases in ventral aortic (13–39 %) and dorsal aortic (17–54 %) blood pressures that reflected marked increases in systemic vascular resistance (16–78 %); branchial vascular resistance was unaffected by hypercapnia. At the highest level of hypercapnia (9.0 mmHg), central venous pressure was significantly elevated by 54 %. Although cardiac output remained constant, heart rate was significantly lowered by 4–7 beats min(−)(1) at the two highest levels of hypercapnia. To determine whether the cardiovascular responses to hypercapnia were being blunted by the stepwise increase in external P(CO2), a separate group of fish was exposed directly to a single step of hypercapnia (water P(CO2) 8.0 mmHg). The cardiovascular responses were similar to those exhibited by the more gradually exposed fish except that central venous pressure did not increase and the extent of the bradycardia was greater (13 beats min(−)(1)). After confirming the effectiveness of yohimbine in blocking the vasoconstrictory (α)-adrenoreceptors of the systemic vasculature, this antagonist was used as a tool to assess the importance of (α)-adrenoreceptor stimulation in promoting the cardiovascular responses during hypercapnia. Prior treatment of fish with yohimbine prevented the increased blood pressures and systemic vascular resistance during hypercapnia but did not influence the CO(2)-induced bradycardia. Plasma levels of catecholamines did not change during hypercapnia, and therefore the stimulation of the systemic (α)-adrenoreceptors presumably reflected increased sympathetic nerve activity. To determine whether the cardiovascular changes elicited by hypercapnia were related to acidosis-induced hypoxaemia, fish were exposed to hypoxia in a stepwise manner (water P(O2) 65–151 mmHg). The cardiovascular responses to hypoxia were markedly different from those to hypercapnia and consisted of pronounced increases in systemic and branchial vascular resistance, but only at the most severe level of hypoxia; ventral and dorsal aortic pressures were unaffected. The differences between the responses to hypercapnia and hypoxia, coupled with the smaller reductions in blood oxygen content during hypercapnia, support the hypothesis that the cardiovascular responses to CO(2) are direct and are unrelated to hypoxaemia.


2001 ◽  
Vol 204 (1) ◽  
pp. 115-125 ◽  
Author(s):  
J.E. McKendry ◽  
S.F. Perry

In situ and in vivo experiments were performed on rainbow trout (Oncorhynchus mykiss) to examine (i) the direct effect of CO(2) on the systemic vasculature and (ii) the influence of internal versus external hypercapnic acidosis on cardiovascular variables including blood pressure, cardiac output and systemic vascular resistance. Results from in situ saline-perfused trunk preparations indicated that CO(2) (0.6, 1.0 or 2.0% CO(2)) elicited a significant vasodilation, but only in the presence of pre-existing humoral adrenergic tone. In the absence of pre-existing vascular tone, CO(2) was without effect on systemic resistance. In contrast, hypercarbia in vivo triggered a statistically significant increase in systemic resistance (approximately 70 %) that was associated with elevated ventral aortic (approximately 42 %) and dorsal aortic (approximately 43 %) blood pressures and with a significant bradycardia (approximately 12 %); cardiac output was not significantly affected. To determine the potential roles of internal versus external chemoreceptors in mediating the cardiovascular responses to hypercarbia, experiments were performed to elevate the endogenous arterial partial pressure of CO(2) (Pa(CO2)) without an accompanying increase in external P(CO2) (Pw(CO2)). In one series, trout were given a bolus injection of the carbonic anhydrase inhibitor acetazolamide (30 mg kg(−1)) to inhibit CO(2) excretion, and thus raise Pa(CO2), 5–7 h prior to being exposed to an acute increase in Pw(CO2) (maximum Pw(CO2)=6.3+/−0.4 mmHg; 1 mmHg=0.133 kPa). Despite a marked increase in Pa(CO2) (approximately 7 mmHg) after injection of acetazolamide, there was no increase in dorsal aortic blood pressure (P(DA)) or systemic resistance (R(S)). The ensuing exposure to hypercarbia, however, significantly increased P(DA) (by approximately 20 %) and R(S) (by approximately 35 %). A second series of experiments used a 5–7 h period of exposure to hyperoxia (Pw(O2)=643+/−16 mmHg) to establish a new, elevated baseline Pa(CO2) (7.8+/−1.1 mmHg) without any change in Pw(CO2). Despite a steadily increasing Pa(CO2) during the 5–7 h of hyperoxia, there was no associated increase in P(DA) or R(S). Ensuing exposure to hypercarbia, however, significantly increased P(DA) (by approximately 20 %) and R(S) (by approximately 150 %). Plasma adrenaline levels were increased significantly during exposure to hypercarbia and, therefore, probably contributed to the accompanying cardiovascular effects. These findings demonstrate that the cardiovascular effects associated with hypercarbia in rainbow trout are unrelated to any direct constrictory effects of CO(2) on the systemic vasculature and are unlikely to be triggered by activation of internally oriented receptors. Instead, the data suggest that the cardiovascular responses associated with hypercarbia are mediated exclusively by externally oriented chemoreceptors.


2008 ◽  
Vol 294 (5) ◽  
pp. R1648-R1656 ◽  
Author(s):  
Henrik Seth ◽  
Erik Sandblom ◽  
Susanne Holmgren ◽  
Michael Axelsson

When animals feed, blood flow to the gastrointestinal tract increases to ensure an adequate oxygen supply to the gastrointestinal tissue and an effective absorption of nutrients. In mammals, this increase depends on the chemical properties of the food, as well as, to some extent, on the mechanical distension of the stomach wall. By using an inflatable nitrile balloon positioned in the stomach, we investigated the cardiovascular responses to mechanical stretch of the stomach wall in rainbow trout ( Oncorhynchus mykiss). Distension with a volume equivalent to a meal of 2% of the body mass increased dorsal aortic blood pressure by up to 29%, and central venous blood pressure increased transiently nearly fivefold. The increase in arterial pressure was mediated by an increased vascular resistance of both the systemic and the intestinal circulation. Cardiac output, heart rate, and stroke volume (SV) did not change, and only transient changes in gut blood flow were observed. The increase in arterial pressure was abolished by the α-adrenergic antagonist prazosin, indicating an active adrenergic vasoconstriction, whereas the venous pressor response could be the consequence of a passive increase in intraperitoneal pressure. Our results show that mechanical distension of the stomach causes an instantaneous increase in general vascular resistance, which may facilitate a redistribution of blood to the gastrointestinal tract when chemical stimuli from a meal induce vasodilation in the gut circulation. The normal postprandial increase in gut blood flow in teleosts is, therefore, most likely partly dependent on mechanical stimuli, as well as on chemical stimuli.


2000 ◽  
Vol 279 (2) ◽  
pp. R484-R491 ◽  
Author(s):  
Nagi Mimassi ◽  
Fatemeh Shahbazi ◽  
Jörgen Jensen ◽  
Dominique Mabin ◽  
J. Michael Conlon ◽  
...  

The cardiovascular effects of centrally and peripherally administered synthetic trout urotensin (U)-I, a member of the corticotropin-releasing hormone family of neuroendocrine peptides, were investigated in unanesthetized rainbow trout Oncorhynchus mykiss. Intracerebroventricular injections of U-I (5.0 and 12.5 pmol) produced a sustained increase in mean dorsal aortic blood pressure (PDA) without significant change in heart rate (HR). This elevation in PDA was associated with an increase in cardiac output, but systemic vascular resistance did not change. Intra-arterial injection of U-I (12.5–500 pmol) evoked a dose-dependent increase in PDA, but in contrast to the hemodynamic effects of centrally administered U-I, the hypertensive effect was associated with an increase in systemic vascular resistance and an initial fall in cardiac output. HR did not change or underwent a delayed increase. Pretreatment of trout with prazosin, an α-adrenoreceptor antagonist, completely abolished the rise in arterial blood pressure after intra-arterial administration of U-I, which was replaced by a sustained hypotension and tachycardia. Trout U-I produced a dose-dependent (pD2 = 7.74 ± 0.08) relaxation of preconstricted rings of isolated trout arterial vascular smooth muscle, suggesting that the primary action of the peptide in the periphery is vasorelaxation that is rapidly reversed by release of catecholamines. Our results suggest that U-I may regulate blood pressure in trout by acting centrally as a neurotransmitter and/or neuromodulator and peripherally as a neurohormone functioning either as a locally acting vasodilator or as a potent secretagogue of catecholamines.


2006 ◽  
Vol 291 (3) ◽  
pp. R711-R718 ◽  
Author(s):  
Erik Sandblom ◽  
Michael Axelsson

Central venous blood pressure (Pven) increases in response to hypoxia in rainbow trout ( Oncorhynchus mykiss), but details on the control mechanisms of the venous vasculature during hypoxia have not been studied in fish. Basic cardiovascular variables including Pven, dorsal aortic blood pressure, cardiac output, and heart rate were monitored in vivo during normoxia and moderate hypoxia (PWO2 = ∼9 kPa), where PWO2 is water oxygen partial pressure. Venous capacitance curves for normoxia and hypoxia were constructed at 80–100, 90–110, and 100–120% of total blood volume by transiently (8 s) occluding the ventral aorta and measure Pven during circulatory arrest to estimate the mean circulatory filling pressure (MCFP). This allowed for estimates of hypoxia-induced changes in unstressed blood volume (USBV) and venous compliance. MCFP increased due to a decreased USBV at all blood volumes during hypoxia. These venous responses were blocked by α-adrenoceptor blockade with prazosin (1 mg/kg body mass). MCFP still increased during hypoxia after pretreatment with the adrenergic nerve-blocking agent bretylium (10 mg/kg body mass), but the decrease in USBV only persisted at 80–100% blood volume, whereas vascular capacitance decreased significantly at 90–110% blood volume. In all treatments, hypoxia typically reduced heart rate while cardiac output was maintained through a compensatory increase in stroke volume. Despite the markedly reduced response in venous capacitance after adrenergic blockade, Pven always increased in response to hypoxia. This study reveals that venous capacitance in rainbow trout is actively modulated in response to hypoxia by an α-adrenergic mechanism with both humoral and neural components.


Author(s):  
Daniel Morgenroth ◽  
Tristan McArley ◽  
Andreas Ekström ◽  
Albin Gräns ◽  
Michael Axelsson ◽  
...  

AbstractWhen in seawater, rainbow trout (Oncorhynchus mykiss) drink to avoid dehydration and display stroke volume (SV) mediated elevations in cardiac output (CO) and an increased proportion of CO is diverted to the gastrointestinal tract as compared to when in freshwater. These cardiovascular alterations are associated with distinct reductions in systemic and gastrointestinal vascular resistance (RSys and RGI, respectively). Although increased gastrointestinal blood flow (GBF) is likely essential for osmoregulation in seawater, the sensory functions and mechanisms driving the vascular resistance changes and other associated cardiovascular changes in euryhaline fishes remain poorly understood. Here, we examined whether internal gastrointestinal mechanisms responsive to osmotic changes mediate the cardiovascular changes typically observed in seawater, by comparing the cardiovascular responses of freshwater-acclimated rainbow trout receiving continuous (for 4 days) gastric perfusion with half-strength seawater (½ SW, ~ 17 ppt) to control fish (i.e., no perfusion). We show that perfusion with ½ SW causes significantly larger increases in CO, SV and GBF, as well as reductions in RSys and RGI, compared with the control, whilst there were no significant differences in blood composition between treatments. Taken together, our data suggest that increased gastrointestinal luminal osmolality is sensed directly in the gut, and at least partly, mediates cardiovascular responses previously observed in SW acclimated rainbow trout. Even though a potential role of mechano-receptor stimulation from gastrointestinal volume loading in eliciting these cardiovascular responses cannot be excluded, our study indicates the presence of internal gastrointestinal milieu-sensing mechanisms that affect cardiovascular responses when environmental salinity changes.


2019 ◽  
Vol 207 ◽  
pp. 43-51 ◽  
Author(s):  
Richard C. Kolanczyk ◽  
Jeffrey S. Denny ◽  
Barbara R. Sheedy ◽  
Patricia K. Schmieder ◽  
Mark A. Tapper

2019 ◽  
Vol 126 (2) ◽  
pp. 444-453 ◽  
Author(s):  
Silvana Roberto ◽  
Raffaele Milia ◽  
Azzurra Doneddu ◽  
Virginia Pinna ◽  
Girolamo Palazzolo ◽  
...  

Metaboreflex is a reflex triggered during exercise or postexercise muscle ischemia (PEMI) by metaboreceptor stimulation. Typical features of metaboreflex are increased cardiac output (CO) and blood pressure. Patients suffering from metabolic syndrome display hemodynamic abnormalities, with an exaggerated systemic vascular resistance (SVR) and reduced CO response during PEMI-induced metaboreflex. Whether patients with type 2 diabetes mellitus (DM2) have similar hemodynamic abnormalities is unknown. Here we contrast the hemodynamic response to PEMI in 14 patients suffering from DM2 (age 62.7 ± 8.3 yr) and in 15 age-matched controls (CTLs). All participants underwent a control exercise recovery reference test and a PEMI test to obtain the metaboreflex response. Central hemodynamics were evaluated by unbiased operator-independent impedance cardiography. Although the blood pressure response to PEMI was not significantly different between the groups, we found that the SVR and CO responses were reversed in patients with DM2 as compared with the CTLs (SVR: 392.5 ± 549.6 and −14.8 ± 258.9 dyn·s−1·cm−5; CO: −0.25 ± 0.63 and 0.46 ± 0.50 l/m, respectively, in DM2 and in CTL groups, respectively; P < 0.05 for both). Of note, stroke volume (SV) increased during PEMI in the CTL group only. Failure to increase SV and CO was the consequence of reduced venous return, impaired cardiac performance, and augmented afterload in patients with DM2. We conclude that patients with DM2 have an exaggerated vasoconstriction in response to metaboreflex activation not accompanied by a concomitant increase in heart performance. Therefore, in these patients, blood pressure response to the metaboreflex relies more on SVR increases rather than on increases in SV and CO. NEW & NOTEWORTHY The main new finding of the present investigation is that subjects with type 2 diabetes mellitus have an exaggerated vasoconstriction in response to metaboreflex activation. In these patients, blood pressure response to the metaboreflex relies more on systemic vascular resistance than on cardiac output increments.


Sign in / Sign up

Export Citation Format

Share Document