scholarly journals Jaw kinematics and tongue protraction-retraction during Chewing and drinking in the pig

2021 ◽  
pp. jeb.239509
Author(s):  
Rachel A. Olson ◽  
Stéphane J. Montuelle ◽  
Brad A. Chadwell ◽  
Hannah Curtis ◽  
Susan H. Williams

Mastication and drinking are rhythmic and cyclic oral behaviors that require interactions between the tongue, jaw, and a food or liquid bolus, respectively. During mastication, the tongue transports and positions the bolus for breakdown between the teeth. During drinking, the tongue aids in ingestion and then transports the bolus to the oropharynx. The objective of this study is to compare jaw and tongue kinematics during chewing and drinking in pigs. We hypothesize there will be differences in jaw gape cycle dynamics and tongue protraction-retraction between behaviors. Mastication cycles had an extended slow-close phase, reflecting tooth-food-tooth contact, whereas drinking cycles had an extended slow-open phase, corresponding to tongue protrusion into the liquid. Compared to chewing, drinking jaw movements were of lower magnitude for all degrees of freedom examined (jaw protraction, yaw, and pitch), and were bilaterally symmetrical with virtually no yaw. The magnitude of tongue protraction-retraction (Txt), relative to a mandibular coordinate system, was greater during mastication than drinking, but there were minimal differences in the timing of maximum and minimum Txt relative to the jaw gape cycle between behaviors. However, during drinking, the tongue tip is often located outside the oral cavity for the entire cycle, leading to differences between behaviors in the timing of anterior marker maximum Txt. This demonstrates that there is variation in tongue-jaw coordination between behaviors. These results show that jaw and tongue movements vary significantly between mastication and drinking, which hint at differences in the central control of these behaviors.

2020 ◽  
Author(s):  
Rachel A. Olson ◽  
Stéphane J. Montuelle ◽  
Brad A. Chadwell ◽  
Hannah Curtis ◽  
Susan H. Williams

ABSTRACTMastication and drinking are rhythmic and cyclic oral behaviors that require interactions between the tongue, jaw, and a food or liquid bolus, respectively. During mastication, the tongue transports and positions the bolus for breakdown between the teeth. During drinking, the tongue aids in ingestion and then transports the bolus to the oropharynx. The objective of this study is to compare jaw and tongue kinematics during chewing and drinking in pigs. We hypothesize there will be differences in jaw gape cycle dynamics and tongue protraction-retraction between behaviors. Mastication cycles had an extended slow-close phase, reflecting tooth-food-tooth contact, whereas drinking cycles had an extended slow-open phase, corresponding to tongue protrusion into the liquid. Drinking jaw movements were of lower magnitude for all degrees of freedom examined (jaw protraction, yaw, and pitch), and were bilaterally symmetrical with virtually no yaw. The magnitude of tongue protraction-retraction (Tx) was greater during mastication than drinking, but there were minimal differences in the timing of maximum and minimum tongue Tx relative to the jaw gape cycle between behaviors. However, during drinking, the tongue tip is often located outside the oral cavity for the entire cycle, leading to differences in behaviors in the timing of anterior marker maximum tongue Tx. This demonstrates that there is variation in tongue-jaw coordination between behaviors. These results show that jaw and tongue movements vary significantly between mastication and drinking, which hint at differences in the central control of these behaviors.Summary statementDifferences in the magnitude and timing of tongue and jaw movements and the anteroposterior positioning of the tongue during chewing and drinking demonstrate key differences in coordination of these behaviors.


2018 ◽  
Vol 10 (2) ◽  
Author(s):  
Gabriel Muñoz Quintana

La musculatura del sistema masticatorio y la articulación temporomandibular (ATM) están protegidos por reflejos nerviosos básicos y sistema neuromuscular a través de la coordinación de fuerzas musculares, todo lo que produce sobrecarga muscular repetitiva como los hábitos parafuncionales (HPF) pueden ocasionar trastornos temporomandibulares (TTM)1. Los HPF se caracterizan por movimientos anormales a la función mandibular normal sin objetivo funcional, al estar alterados constituyen una fuente productora de fuerzas traumáticas caracterizadas por dirección anormal, intensidad excesiva y repetición frecuente y duradera (Rolando Castillo Hernández, 2001)4. El objetivo del estudio fue identificar la asociación entre la presencia de hábitos parafuncionales de la cavidad bucal y los TTM en adolescentes de la ciudad de Puebla. Estudio observacional descriptivo. Se incluyeron 258 adolescentes, 132 (51.2%) mujeres y 126 (48.8%) hombres, con una edad promedio de 12.5±.73 y quienes fueron diagnosticados con los CDI/TTM y los HPF fueron auto-reportados por los pacientes. Se encontró una prevalencia de los TTM del 39.9% y una prevalencia de HPF del 86%. Los HPF más frecuentemente reportados fueron la succión labial y la onicofagia. Se encontró una asociación significativa (x2=7.31, p=0.007) entre los hábitos parafuncionales y los TTM en adolescentes. Palabras clave: Trastornos temporomandibulares, hábitos parafuncionales, adolescentes, articulación temporomandibular. Abstract The muscles of the masticatory system and temporomandibular joint (TMJ) are protected by basic nerve reflex and neuromuscular system through the coordination of muscle forces, all that repetitive muscle overload occurs as habit parafunctional (HPF) can cause temporomandibular disorder TMD)1. The characteristics of HPF are abnormal jaw movements without a functional objective. Being the jaw movements altered, they constitute a source of traumatic forces with an abnormal direction, excessive intensity and long-lasting and frequent duration. (Rolando Hernandez Castillo 2001)4. Objective: was to identify the association between the presences of parafunctional habits of the oral cavity and TMD in adolescents in the Puebla city in Mexico. Material and methods: Is a observational study, we included 258 adolescents 132 (51%) females and 126 (48.8%) were men, mean age 12.5±.73 and who were diagnosed with CDI/TTM and HPF were self- reported by patients. Results: The prevalence of TMD was 39.9% and a prevalence of 86% HPF. The most frequently reported HPF were lip sucking and nail biting. We found a significant association (x2= 7.31, p = 0,007) between HPF and TMD in adolescents. Key words: Parafunctional habits of oral cavity, temporomandibular disorders, temporomandibular joint. (Odontol Pediatr 2011;10(2): 90-94).


2007 ◽  
Vol 97 (1) ◽  
pp. 604-617 ◽  
Author(s):  
Eliana M. Klier ◽  
Hongying Wang ◽  
J. Douglas Crawford

Two central, related questions in motor control are 1) how the brain represents movement directions of various effectors like the eyes and head and 2) how it constrains their redundant degrees of freedom. The interstitial nucleus of Cajal (INC) integrates velocity commands from the gaze control system into position signals for three-dimensional eye and head posture. It has been shown that the right INC encodes clockwise (CW)-up and CW-down eye and head components, whereas the left INC encodes counterclockwise (CCW)-up and CCW-down components, similar to the sensitivity directions of the vertical semicircular canals. For the eyes, these canal-like coordinates align with Listing’s plane (a behavioral strategy limiting torsion about the gaze axis). By analogy, we predicted that the INC also encodes head orientation in canal-like coordinates, but instead, aligned with the coordinate axes for the Fick strategy (which constrains head torsion). Unilateral stimulation (50 μA, 300 Hz, 200 ms) evoked CW head rotations from the right INC and CCW rotations from the left INC, with variable vertical components. The observed axes of head rotation were consistent with a canal-like coordinate system. Moreover, as predicted, these axes remained fixed in the head, rotating with initial head orientation like the horizontal and torsional axes of a Fick coordinate system. This suggests that the head is ordinarily constrained to zero torsion in Fick coordinates by equally activating CW/CCW populations of neurons in the right/left INC. These data support a simple mechanism for controlling head orientation through the alignment of brain stem neural coordinates with natural behavioral constraints.


Author(s):  
Ahmed A. Shabana ◽  
Martin B. Hamper ◽  
James J. O’Shea

In vehicle system dynamics, the effect of the gyroscopic moments can be significant during curve negotiations. The absolute angular velocity of the body can be expressed as the sum of two vectors; one vector is due to the curvature of the curve, while the second vector is due to the rate of changes of the angles that define the orientation of the body with respect to a coordinate system that follows the body motion. In this paper, the configuration of the body in the global coordinate system is defined using the trajectory coordinates in order to examine the effect of the gyroscopic moments in the case of curve negotiations. These coordinates consist of arc length, two relative translations and three relative angles. The relative translations and relative angles are defined with respect to a trajectory coordinate system that follows the motion of the body on the curve. It is shown that when the yaw and roll angles relative to the trajectory coordinate system are constrained and the motion is predominantly rolling, the effect of the gyroscopic moment on the motion becomes negligible, and in the case of pure rolling and zero yaw and roll angles, the generalized gyroscopic moment associated with the system degrees of freedom becomes identically zero. The analysis presented in this investigation sheds light on the danger of using derailment criteria that are not obtained using laws of motion, and therefore, such criteria should not be used in judging the stability of railroad vehicle systems. Furthermore, The analysis presented in this paper shows that the roll moment which can have a significant effect on the wheel/rail contact forces depends on the forward velocity in the case of curve negotiations. For this reason, roller rigs that do not allow for the wheelset forward velocity cannot capture these moment components, and therefore, cannot be used in the analysis of curve negotiations. A model of a suspended railroad wheelset is used in this investigation to study the gyroscopic effect during curve negotiations.


1997 ◽  
Vol 78 (3) ◽  
pp. 1516-1530 ◽  
Author(s):  
Ruth E. Martin ◽  
Gregory M. Murray ◽  
Pentti Kemppainen ◽  
Yuji Masuda ◽  
Barry J. Sessle

Martin, Ruth E., Gregory M. Murray, Pentti Kemppainen, Yuji Masuda, and Barry J. Sessle. Functional properties of neurons in the primate tongue primary motor cortex during swallowing. J. Neurophysiol. 78: 1516–1530, 1997. Recent studies conducted in our laboratory have suggested that the tongue primary motor cortex (i.e., tongue-MI) plays a critical role in the control of voluntary tongue movements in the primate. However, the possible involvement of tongue-MI in semiautomatic tongue movements, such as those in swallowing, remains unkown. Therefore the present study was undertakein in attempts to address whether tongue-MI plays a role in the semiautomatic tongue movements produced during swallowing. Extracellular single neuron recordings were obtained from tongue-MI, defined by intracortical microstimulation (ICMS), in two awake monkeys as they performed three types of swallowing (swallowing of a juice reward after successful tongue task performance, nontask-related swallowing of a liquid bolus, and nontask-related swallowing of a solid bolus) as well as a trained tongue-protrusion task. Electromyographic activity was recorded simultaneously from various orofacial and laryngeal muscles. In addition, the afferent input to each tongue-MI neuron and ICMS-evoked motor output characteristics at each neuronal recording site were determined. Neurons were considered to show swallow and/or tongue-protrusion task-related activity if a statistically significant difference in firing rate was seen in association with these behaviors compared with that observed during a control pretrial period. Of a total of 80 neurons recorded along 40 microelectrode penetrations in the ICMS-defined tongue-MI, 69% showed significant alterations of activity in relation to the swallowing of a juice reward, whereas 66% exhibited significant modulations of firing in association with performance of the trained tongue-protrusion task. Moreover, 48% showed significant alterations of firing in relation to both swallowing and the tongue-protrusion task. These findings suggest that the region of cortex involved in swallowing includes MI and that tongue-MI may play a role in the regulation of semiautomatic tongue movement, in addition to trained motor behavior. Swallow-related tongue-MI neurons exhibited a variety of swallow-related activity patterns and were distributed throughout the ICMS-defined tongue-MI at sites where ICMS evoked a variety of types of tongue movements. These findings are consistent with the view that multiple efferent zones for the production of tongue movements are activated in swallowing. Many swallow-related tongue-MI neurons had an orofacial mechanoreceptive field, particularly on the tongue dorsum, supporting the view that afferent inputs may be involved in the regulation of the swallowing synergy.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Soenke J. Hellwig ◽  
Peter W. Iltis ◽  
Arun A. Joseph ◽  
Dirk Voit ◽  
Jens Frahm ◽  
...  

Abstract Background The embouchure of trumpet players is of utmost importance for tone production and quality of playing. It requires skilled coordination of lips, facial muscles, tongue, oral cavity, larynx and breathing and has to be maintained by steady practice. In rare cases, embouchure dystonia (EmD), a highly task specific movement disorder, may cause deterioration of sound quality and reduced control of tongue and lip movements. In order to better understand the pathophysiology of this movement disorder, we use real-time MRI to analyse differences in tongue movements between healthy trumpet players and professional players with embouchure dystonia. Methods Real-time MRI videos (with sound recording) were acquired at 55 frames per second, while 10 healthy subjects and 4 patients with EmD performed a defined set of exercises on an MRI-compatible trumpet inside a 3 Tesla MRI system. To allow for a comparison of tongue movements between players, temporal changes of MRI signal intensities were analysed along 7 standardized positions of the tongue using a customised MATLAB toolkit. Detailed results of movements within the oral cavity during performance of an ascending slurred 11-note harmonic series are presented. Results Playing trumpet in the higher register requires a very precise and stable narrowing of the free oral cavity. For this purpose the anterior section of the tongue is used as a valve in order to speed up airflow in a controlled manner. Conversely, the posterior part of the tongue is much less involved in the regulation of air speed. The results further demonstrate that healthy trumpet players control movements of the tongue rather precisely and stable during a sustained tone, whereas trumpet players with EmD exhibit much higher variability in tongue movements. Conclusion Control of the anterior tongue in trumpet playing emerges as a critical feature for regulating air speed and, ultimately, achieving a high-quality performance. In EmD the observation of less coordinated tongue movements suggests the presence of compensatory patterns in an attempt to regulate (or correct) pitch. Increased variability of the anterior tongue could be an objective sign of dystonia that has to be examined in further studies and extended to other brass instruments and may be also a potential target for therapy options.


Author(s):  
A. Wolf ◽  
S. Amir ◽  
A. B. Mor

In this report we present the second prototype of a 3-degrees-of-freedom active, miniature bone-attached, robotic system. The report focuses on the mechanical structure, workspace analysis and inverse kinematics solution. The robot is capable of preparing the bone cavity for an implant during joint arthroplasty procedures. This system, just as its predecessor is image-free and all planning is performed intraoperatively in the robot coordinate system, eliminating the need for external tracking systems in the OR. Experiments were conducted using the first robot prototype to evaluate its accuracy and the results supported the feasibility of the concept.


Author(s):  
Akira Okamoto ◽  
Dean B. Edwards

Various control algorithms have been developed for fleets of autonomous vehicles. Many of the successful control algorithms in practice are behavior-based control or nonlinear control algorithms, which makes analyzing their stability difficult. At the same time, many system theoretic approaches for controlling a fleet of vehicles have also been developed. These approaches usually use very simple vehicle models such as particles or point-mass systems and have only one coordinate system which allows stability to be proven. Since most of the practical vehicle models are six-degree-of-freedom systems defined relative to a body-fixed coordinate system, it is difficult to apply these algorithms in practice. In this paper, we consider a formation regulation problem as opposed to a formation control problem. In a formation control problem, convergence of a formation from random positions and orientations is considered, and it may need a scheme to integrate multiple moving coordinates. On the contrary, in a formation regulation problem, it is not necessary since small perturbations from the nominal condition, in which the vehicles are in formation, are considered. A common origin is also not necessary if the relative distance to neighbors or a leader is used for regulation. Under these circumstances, the system theoretic control algorithms are applicable to a formation regulation problem where the vehicle models have six degrees of freedom. We will use a realistic six-degree-of-freedom model and investigate stability of a fleet using results from decentralized control theory. We will show that the leader-follower control algorithm does not have any unstable fixed modes if the followers are able to measure distance to the leader. We also show that the leader-follower control algorithm has fixed modes at the origin, indicating that the formation is marginally stable, when the relative distance measurements are not available. Multi-vehicle simulations are performed using a hybrid leader-follower control algorithm where each vehicle is given a desired trajectory to follow and adjusts its velocity to maintain a prescribed distance to the leader. Each vehicle is modeled as a three-degree-of-freedom system to investigate the vehicle’s motion in a horizontal plane. The examples show efficacy of the analysis.


1992 ◽  
Vol 67 (3) ◽  
pp. 759-774 ◽  
Author(s):  
G. M. Murray ◽  
B. J. Sessle

1. The previous paper has described in detail the input and output features of single neurons located at sites within primate face motor cortex from which intracortical microstimulation (ICMS, less than or equal to 20 microA) evoked tongue movements at the lowest threshold ("tongue-MI" sites); for comparative purposes, we also reported on the input and output features of a smaller number of neurons recorded at sites from which ICMS could evoke jaw movements ("jaw-MI" sites), facial movements ("face-MI" sites), or, at a few sites, tongue movements and, at the same threshold intensity, either a jaw movement or a facial movement. 2. Our findings of an extensive and diverse representation of sites within face motor cortex of monkeys for the generation of elemental components of tongue movement, and the relatively few sites from which jaw-closing movements could be evoked, were consistent with our recent observations that reversible, cooling-induced inactivation of the face motor cortex severely impaired the performance by monkeys of a tongue-protrusion task but had only relatively minor effects on the performance of a biting task. In an attempt to establish a neuronal correlate for these different behavioral relations, the present study has documented the task-related activities of those single neurons that were characterized in the previous paper in terms of afferent input and ICMS-defined output features. 3. Each task required the development and maintenance by each monkey of a fixed force level for a minimum period of time to obtain a fruit-juice reward. During one or both of these tasks, we characterized the activities of 231 single face motor cortical neurons that were located at the above-mentioned ICMS-defined sites. Neurons were said to be related to a particular task if they showed statistically significant differences in firing rates during the task in comparison with a control pretrial period (PTP). 4. In tongue-MI, there was a significantly higher proportion of neurons (63% of 156 neurons tested) that were related to the tongue-protrusion task than to the biting task (15% of 65). However, in jaw-MI the proportion of neurons that were biting task-related (63% of 19) was significantly higher than the proportion related to the tongue-protrusion task (11% of 9); the proportion of biting task-related neurons at ICMS-defined jaw-closing sites was also higher than that at jaw-opening sites.(ABSTRACT TRUNCATED AT 400 WORDS)


1998 ◽  
Vol 10 (6) ◽  
pp. 499-504 ◽  
Author(s):  
Shin-ichi Nakajima ◽  
◽  
Toyohiko Hayashi ◽  
Hiroshi Kobayashi ◽  
◽  
...  

Human mastication is performed by coordinated activities of several jaw muscles. To clarify functions of these muscles, we developed a jaw movement simulator (JSN/Sl) consisting of a 2 degrees of freedom (2DOF) mechanism and five muscle actuators able to reproduce jaw movements on a sagittal plane. The actuator is a cable-tendon driven by a DC servomotor controlled by a compliance control scheme to obtain viscoelastic muscle characteristics. To simulate life-like clenching, we controlled occlusal position and force by incorporating position and force sensors, using neural network learning control. Occlusal force successfully converged to a desired value through learning. Tension patterns of muscle actuators during clenching well coincided with human jaw activities.


Sign in / Sign up

Export Citation Format

Share Document