Plasma Chloride and Sodium, and Chloride Space in the European Eel, Anguilla Anguilla L

1972 ◽  
Vol 57 (1) ◽  
pp. 113-131
Author(s):  
R. KIRSCH

1. New intra-vascular cannulation techniques are described, and also an extra-corporal blood circuit containing an artificial heart and a counting cell. This makes possible a continuous study of the radioactivity of the blood. 2. Plasma chloride concentration varies greatly in fresh-water eels despite good sodium regulation. 3. The fresh-water to sea-water adaptation of eels is frequently accompanied by a temporary hypermineralization of the internal medium. This necessitates a high degree of cellular euryhalinity. 4. The sea-water-adapted eel maintains strict homeostasis of its plasma chloride and sodium. 5. The chloride distribution space decreases by 10% when eels are transferred from fresh water to sea water. The internal distribution of chloride is also modified and its fluxes between the ion compartments of the body are considerably increased.

1968 ◽  
Vol 48 (2) ◽  
pp. 359-380
Author(s):  
D. W. SUTCLIFFE

1. Sodium uptake and loss rates are given for three gammarids acclimatized to media ranging from fresh water to undiluted sea water. 2. In Gammarus zaddachi and G. tigrinus the sodium transporting system at the body surface is half-saturated at an external concentration of about 1 mM/l. and fully saturated at about 10 mM/l. sodium. In Marinogammarus finmarchicus the respective concentrations are six to ten times higher. 3. M. finmarchicus is more permeable to water and salts than G. zaddachi and G. tigrinus. Estimated urine flow rates were equivalent to 6.5% body weight/hr./ osmole gradient at 10°C. in M. finmarchicus and 2.8% body weight/hr./osmole gradient in G. zaddachi. The permeability of the body surface to outward diffusion of sodium was four times higher in M. finmarchicus, but sodium losses across the body surface represent at least 50% of the total losses in both M. finmarchicus and G. zaddachi. 4. Calculations suggest that G. zaddachi produces urine slightly hypotonic to the blood when acclimatized to the range 20% down to 2% sea water. In fresh water the urine sodium concentration is reduced to a very low level. 5. The process of adaptation to fresh water in gammarid crustaceans is illustrated with reference to a series of species from marine, brackish and freshwater habitats.


1973 ◽  
Vol 58 (1) ◽  
pp. 105-121
Author(s):  
R. KIRSCH ◽  
N. MAYER-GOSTAN

Using isotopic procedures, the drinking rate and chloride exchanges were studied in the eel Anguilla anguilla during transfer from fresh water to sea water. 1. Following transfer to sea water there is a threefold increase of the drinking rate (lasting about 1 h). Then it falls to a minimum after 12-16 h and rises again to a maximum level about the seventh day after the transfer. Then a gradual reduction leads to a steady value which is not significantly different from the one observed in fresh water. 2. The changes with time of the plasma sodium and chloride concentrations are given. Their kinetics are not completely alike. 3. The chloride outflux increases 40-fold on transfer of the eel to sea water, but even so it is very low. After the sixth hour in sea water there is a progressive increase in the flux, so that on the fourth day it is higher (500 µ-equiv. h-1.100 g-1) than in the seawater-adapted animals (230 µ-equiv.h-1.100 g-1). 4. Drinking rate values in adapted animals are discussed in relation to the external medium. The kinetics of the drinking rate together with variations in body weights after freshwater-seawater transfer are discussed in relation to the possible stimulus of the drinking reflex. 5. Chloride fluxes (outflux, net flux, digestive entry) are compared and lead one to assume that in seawater-adapted fish one-third of the chloride influx enters via the gut and two-thirds via the gills.


1969 ◽  
Vol 43 (1) ◽  
pp. 9-19 ◽  
Author(s):  
I. CHESTER JONES ◽  
D. K. O. CHAN ◽  
J. C. RANKIN

SUMMARY A method for the study of renal function and measurement of mean ventral and dorsal aortic blood pressure for the freshwater and seawater-adapted eel, and during transfer of the animal from fresh water to sea-water, is described. Freshwater eels have higher resting blood pressure, p-aminohippuric acid (PAH) and inulin clearance rates and urine flow than seawater eels. Urine from freshwater animals has low Na, K, Ca, Mg and Cl concentrations, while the clearance rate of inorganic phosphate exceeded that of inulin. Urine from seawater animals has high Na, Ca, Mg and Cl concentrations while that of inorganic phosphate was low. Clearance rates for Ca and Mg greatly exceeded those of inulin. During transfer from fresh water to sea-water there was an initial fluctuation in blood pressure, urine flow and PAH and inulin clearance rates which lasted about 2 hr. Thereafter these gradually declined to values observed for the seawater-adapted animal. The significance of PAH and inulin clearance rates in the study of renal function in the eel and in teleosts in general is discussed.


1967 ◽  
Vol 46 (3) ◽  
pp. 529-550 ◽  
Author(s):  
D. W. SUTCLIFFE

1. A quantitative study of sodium influx and loss rates was made on Gammarus duebeni obtained from brackish-water localities. Both influx and loss rates were immediately doubled by a rise in temperature from 10 to 20° C. 2. It is estimated that when animals are fully acclimatized to a series of media decreasing from 50 to 2% sea water the rate of sodium uptake at the body surface is doubled to balance the rate of sodium loss, which is also doubled. The increased loss rate is due equally to an increase in the rate of diffusion across the body surface and to loss in hypotonic urine containing about 160-190 mM/l. sodium. Diffusion losses normally account for at least 35% of the total losses, even when the urine is isotonic with the blood. 3. The sodium-transporting system at the body surface is fully saturated at an external concentration of about 10 mM/l. NaCl (2% sea water). The system has a low affinity for sodium ions and is only half-saturated at 1.5-2.5 mM/l. sodium. The overall rate of uptake is increased to its maximum rate to balance sodium losses when in fresh water. 4. When acclimatized to fresh water (0.25 mM/l. NaCl) the sodium loss rate is greatly reduced. This was partly due to a lower rate of diffusion across the body surface following a fall in the blood sodium concentration, and mainly due to elaboration of a very dilute urine. 5. It is suggested that increases in sodium uptake in the antennary glands, resulting in a hypotonic urine, are linked with increases in uptake at the body surface. Both uptake systems are possibly activated by a single internal regulator responding to changes in the blood concentration. 6. Sodium regulation at concentrations below 10 mM/l. NaCl was examined in G. duebeni obtained from fresh-water streams on the Lizard peninsula, the Kintyre peninsula, and the Isle of Man. The regulation of sodium uptake and loss is very similar to regulation in brackish-water animals, and the sodium-transporting system has the same low affinity for sodium ions at concentrations below about 10 mM/l. 7. It is suggested that fresh-water localities in north-west Europe, excluding Ireland, have been colonized from brackish water without any modifications in the sodium-regulatory mechanism. But the fresh-water animals tolerate very low sodium concentrations better than brackish-water animals. This is apparently due to natural selection of individuals in which the sodium uptake rate is higher than the average uptake rate in brackish-water animals.


1978 ◽  
Vol 76 (2) ◽  
pp. 347-358 ◽  
Author(s):  
M. M. BABIKER ◽  
J. C. RANKIN

Low doses of arginine-vasotocin (AVT), isotocin and oxytocin (1 pg–1 ng/kg body weight) were antidiuretic in eels adapted to fresh water but not in those adapted to sea-water. High doses (more than 10 ng/kg) were always diuretic. No effects on tubular water reabsorption were observed and the glomerular filtration rate (GFR) was proportional to the maximum reabsorptive rate for glucose (Tm (glucose)) in eels adapted to sea-water. Increases in urinary flow appeared therefore to result from glomerular recruitment. Infusion of AVT or isotocin at low rates reduced the GFR and urinary flow of freshwater eels to the levels found in seawater eels. Vasopressin (lysine or arginine) had no direct effect on kidney function in freshwater eels but blocked both the diuretic and antidiuretic actions of the other hormones. When infused into seawater eels it was diuretic. This effect could have been due to blockade of the actions of endogenous AVT and/or isotocin.


1968 ◽  
Vol 48 (2) ◽  
pp. 339-358
Author(s):  
D. W. SUTCLIFFE ◽  
J. SHAW

1. A quantitative study of sodium influx and loss was made on populations of Gammarus duebeni obtained from four freshwater localities in Ireland. 2. Characteristic features of sodium regulation in animals from the four localities were as follows, (a) The sodium influx increases gradually with increasing external sodium concentrations, but a maximum (saturation) level is abruptly reached at an external concentration of 1-2 mM/l. and the transporting system is half saturated at about 0.5 mM/l. sodium, (b) Over the range of sodium concentrations found in fresh waters a low rate of sodium uptake is sufficient to balance sodium losses at concentrations down to between 0.5 and 0.25 mM/l. At lower concentrations the influx is increased and the loss rate is reduced. (c) Calculations suggest that hypotonic urine containing approximately 40 mM/l sodium is produced at external concentrations ranging from fresh water to 40 % sea water. At external concentrations below 0.25 mM/l. sodium the urine concentration is probably reduced to well below 40 mM/l. sodium. 3. A detailed comparison is made of sodium regulation at external concentrations ranging between 0.07 and 1 mM/l. sodium in G. duebeni from fresh water in Ireland and from fresh water and brackish water in Britain. It is suggested that G. duebeni in Ireland constitutes a distinct physiological race adapted for living in fresh waters with relatively low sodium concentrations.


1976 ◽  
Vol 64 (2) ◽  
pp. 461-475
Author(s):  
N. Mayer-Gostan ◽  
T. Hirano

The IXth and the Xth cranial nerves in Anguilla anguilla were transected, and the effects upon ion and water balance were studied in fresh water and sea water, and during transfer from fresh water and vice versa. In fresh water there is a slow demineralization due to an excess loss of Na and Cl ions. During freshwater to seawater transfer the eel survives only for 4–5 days. The fish do not drink and Na efflux does not increase enough to extrude excess ions. In sea water the glossopharyngeal and vagus nerves are necessary for the maintenance of the hydromineral balance. Denervation is followed by an increase in plasma ion concentrations. Na fluxes are not modified and increased water loss is not compensated by drinking. The rapid reduction of Na efflux during transfer from sea water to fresh water is not modified by denervation.


PEDIATRICS ◽  
1966 ◽  
Vol 37 (4) ◽  
pp. 684-698
Author(s):  
Jerome Imburg ◽  
Thomas C. Hartney

Animal studies have shown that fluid enters the body via the lungs in sea-water and fresh-water drowning. In fresh-water drowning in dogs, there is marked and rapid hemodilution with death due to ventricular fibrillation in about 4 minutes. In sea-water drowning in dogs, there is hemoconcentration; the blood water is lost into the sea water in the lungs with bradycardia and death due to asystole in 6 to 8 minutes. Studies of human drowning victims show similar, but less striking, changes in hemodynamics. In human non-fatal submersion the problems are usually those produced by impaired pulmonary function and central nervous system damage due to hypoxia. Hemodilution and ventricular fibrillation have not been documented in human nonfatal submersion. Therapeutic measures may be divided into those of an immediate urgent nature to be employed at the accident scene: expired air resuscitation, which should be started on reaching the unconscious victim in the water, and external cardiac massage, when indicated. Later measures to be instituted in the hospital include: cardiac resuscitation, intermittent positive-pressure breathing, hypothermia, tracheostomy and tracheal tiolet, oxygen therapy, antibiotics, steroids, and intravenous fluids to correct defects in blood elements (hemoglobin, electrolytes, pH). Later, pulmonary function should be studied for impairment due to alveolar damage and fibrosis. Permanent neurologic sequellae may develop.


2018 ◽  
Vol 59 (1) ◽  
pp. 91-96 ◽  
Author(s):  
Tamara Kanjuh ◽  
Danilo Mrdak

This study examined the relationship between the sagittal otolith morphometric variables (length, height and weight) and body growth of the European eel. Eels that were studied ranged in total length from 11.2 to 79.5 cm. The relationships between the sagittal otolith variables and fish somatic growth were described with a non-linear function. The resulting coefficients of determination \((r^2)\) ranged from 0.782 to 0.914. The variable most strongly related to fish size was found to be the sagittal otolith length (OL) with 91.4 % of the variability. The results of this study provide the first comprehensive data regarding the relationship between the sagittal otolith morphometric variables with the body length of Anguilla anguilla.


Sign in / Sign up

Export Citation Format

Share Document