Boundary layer investigations on a highly loaded transonic compressor cascade with shock/laminar boundary layer interactions

Author(s):  
L Hilgenfeld ◽  
P Cardamone ◽  
L Fottner

Detailed experimental and numerical investigations of the flowfield and boundary layer on a highly loaded transonic compressor cascade were performed at various Mach and Reynolds numbers representative of real turbomachinery conditions. The emerging shock system interacts with the laminar boundary layer, causing shock-induced separation with turbulent reattachment. Steady two-dimensional calculations have been performed using the Navier—Stokes solver TRACE-U. The flow solver employs a modified version of the one-equation Spalart—Allmaras turbulence model coupled with a transition correlation by Abu-Ghannam/Shaw in the formulation by Drela. The computations reproduce well the experimental results with respect to the profile pressure distribution and the location of the shock system. The transitional behaviour of the boundary layer and the profile losses in the wake are properly predicted as well, except for the highest Mach number tested, where large separated regions appear on the suction side.

2000 ◽  
Vol 123 (2) ◽  
pp. 409-417 ◽  
Author(s):  
Bjo¨rn Gru¨ber ◽  
Volker Carstens

A parametric study which investigates the influence of viscous effects on the damping behavior of vibrating compressor cascades is presented here. To demonstrate the dependence of unsteady aerodynamic forces on the flow viscosity, a computational study was performed for a transonic compressor cascade of which the blades underwent tuned pitching oscillations while the flow conditions extended from fully subsonic to highly transonic flow. Additionally, the reduced frequency and Reynolds number were varied. In order to check the linear behavior of the aerodynamic forces, all calculations were carried out for three different oscillation amplitudes. Comparisons with inviscid Euler results helped identify the influence of viscous effects. The computations were performed with a Navier-Stokes code, the basic features of which are the use of an AUSM upwind scheme, an implicit time integration, and the implementation of the Baldwin-Lomax turbulence model. In order to demonstrate the possibility of this code to correctly predict the unsteady behavior of strong shock-boundary layer interactions, the experiment of Yamamoto and Tanida on a self-induced shock oscillation due to shock-boundary layer interaction was calculated. A significant improvement in the prediction of the shock amplitude was achieved by a slight modification of the Baldwin Lomax turbulence model. An important result of the presented compressor cascade investigations is that viscous effects may cause a significant change in the aerodynamic damping. This behavior is demonstrated by two cases in which an Euler calculation predicts a damped oscillation whereas a Navier-Stokes computation leads to an excited vibration. It was found that the reason for these contrary results are shock-boundary-layer interactions which dramatically change the aerodynamic damping.


Author(s):  
Hans Thermann ◽  
Michael Müller ◽  
Reinhard Niehuis

The objective of the presented work is to investigate models which simulate boundary layer transition in turbomachinery flows. This study focuses on separated-flow transition. Computations with different algebraic transition models are performed three-dimensionally using an implicit Navier-Stokes flow solver. Two different test cases have been chosen for this investigation: First, a linear transonic compressor cascade, and second an annular subsonic compressor cascade. Both test cases show three-dimensional flow structures with large separations at the side-walls. Additionally, laminar separation bubbles can be observed on the suction and pressure side of the blades of the annular subsonic cascade whereas a shock-induced separation can be found on the suction side of the blades of the linear transonic cascade. Computational results are compared with experiments and the effect of transition modeling is analyzed. It is shown that the prediction of the boundary layer development can be substantially improved compared to fully turbulent computations when algebraic transition models are applied.


Author(s):  
Dimitri P. Tselepidakis ◽  
Sung-Eun Kim

This paper presents the computation of the flow around a controlled diffusion compressor cascade. Features associated with by-pass transition close to the leading edge — including laminar leading-edge separation — contribute significantly to the evolution of the boundary layer on the blade surface. Previous studies have demonstrated that conventional k-ε models, based on linear or non-linear Boussinesq stress-strain relations, are able to capture by-pass transition in simple shear, but are unable to resolve transitional features in complex strain, like the leading-edge separation bubble, which is of considerable influence to the suction-side flow at high inlet angle. Here, the k-ω turbulence model has been implemented in a nonstaggered, finite-volume based segregated Reynolds-Averaged Navier-Stokes solver. We demonstrate that this model, if properly sensitized to the generation of turbulence by irrotational strains, is capable of capturing the laminar leading-edge separation bubble. The real flow around the leading edge is laminar and the transition is only provoked on the reattachment region. Additional investigation of transition in a flat-plate boundary layer development has also produced reasonably promising results.


Author(s):  
Björn Grüber ◽  
Volker Carstens

A parametric study which investigates the influence of viscous effects on the damping behaviour of vibrating compressor cascades is presented here. To demonstrate the dependence of unsteady aerodynamic forces on the flow viscosity, a computational study was performed for a transonic compressor cascade of which the blades underwent tuned pitching oscillations while the flow conditions extended from fully subsonic to highly transonic flow. Additionally, the reduced frequency and Reynolds number were varied. In order to check the linear behavior of the aerodynamic forces, all calculations were carried out for three different oscillation amplitudes. Comparisons with inviscid Euler results helped identify the influence of viscous effects. The computations were performed with a Navier-Stokes code, the basic features of which are the use of an AUSM upwind scheme, an implicit time integration, and the implementation of the Baldwin-Lomax turbulence model. In order to demonstrate the possibility of this code to correctly predict the unsteady behavior of strong shock-boundary layer interactions, the experiment of Yamamoto and Tanida on a self-induced shock oscillation due to shock-boundary layer interaction was calculated. A significant improvement in the prediction of the shock amplitude was achieved by a slight modification of the Baldwin Lomax turbulence model. An important result of the presented compressor cascade investigations is that viscous effects may cause a significant change in the aerodynamic damping. This behaviour is demonstrated by two cases in which an Euler calculation predicts a damped oscillation whereas a Navier-Stokes computation leads to an excited vibration. It was found that the reason for these contrary results are shock-boundary-layer interactions which dramatically change the aerodynamic damping.


Author(s):  
Robert Leipold ◽  
Matthias Boese ◽  
Leonhard Fottner

A highly loaded compressor cascade which features a chord length that is ten times larger than in real turbomachinary is used to perform an investigation of the influence of technical surface roughness. The surface structure of a precision forged blade was engraved in two 0.3mm thick sheets of copper with the above mentioned enlarging factor (Leipold and Fottner, 1998). To avoid additional effects due to thickening of the blade contour the sheets of copper are applied as inlay’s to the pressure and suction side. At the high speed cascade wind tunnel the profile pressure distribution and the total pressure distribution at the exit measurement plane were measured for the rough and the smooth blade for a variation of inlet flow angle and inlet Reynolds number. For some interesting flow conditions the boundary layer development was investigated with the laser-two-focus anemometry and the one-dimensional hot-wire anemometry. At low Reynolds numbers and small inlet angles a separation bubble is only slightly reduced due to surface roughness. The positive effect of a reduced separation bubble is overcompensated by a negative influence of surface roughness on the turbulent boundary layer downstream of the separation bubble. At high Reynolds numbers the flow over the rough blade shows a turbulent separation leading to high total pressure loss coefficients. The laser-two-focus measurements indicate a velocity deficit close to the trailing edge even at flow conditions where positive effects due to a reduction of the suction side separation have been expected. The turbulence intensity is reduced close downstream of the separation bubble but increased further downstream due to surface roughness. Thus not the front part but the rear part of the blade reacts sensitively on surface roughness.


Author(s):  
Hans Thermann ◽  
Reinhard Niehuis

Due to the trend in the design of modern aeroengines to reduce weight and to realize high pressure ratios, fan and first stage compressor blades are highly susceptible to flutter. At operating points with transonic flow velocities and high incidences stall flutter might occur involving strong shock-boundary layer interactions, flow separation and oscillating shocks. In this paper, results of unsteady Navier-Stokes flow calculations around an oscillating blade in a linear transonic compressor cascade at different operating points including near stall conditions are presented. The nonlinear unsteady Reynolds-averaged Navier-Stokes equations are solved time-accurately using implicit time-integration. Different Low-Reynolds-Number turbulence models are used for closure. Furthermore, empirical algebraic transition models are applied to enhance the accuracy of prediction. Computations are performed two-dimensionally as well as three-dimensionally. It is shown that, for the steady calculations, the prediction of the boundary layer development and the blade loading can be substantially improved compared with fully turbulent computations when algebraic transition models are applied. Furthermore, it is shown that the prediction of the aerodynamic damping in the case of oscillating blades at near stall conditions can be dependent on the applied transition models.


1999 ◽  
Vol 122 (3) ◽  
pp. 416-424 ◽  
Author(s):  
Robert Leipold ◽  
Matthias Boese ◽  
Leonhard Fottner

A highly loaded compressor cascade, which features a chord length ten times larger than in real turbomachinery, is used to perform an investigation of the influence of technical surface roughness. The surface structure of a precision forged blade was engraved in two 0.3-mm-thick sheets of copper with the above-mentioned enlarging factor (Leipold and Fottner, 1996). To avoid additional effects due to thickening of the blade contour, the sheets of copper are applied as inlays to the pressure and suction side. At the high-speed cascade wind tunnel, the profile pressure distribution and the total pressure distribution at the exit measurement plane were measured for the rough and the smooth blade for a variation of inlet flow angle and inlet Reynolds number. For some interesting flow conditions, the boundary layer development was investigated with laser-two-focus anemometry and one-dimensional hot-wire anemometry. At low Reynolds numbers and small inlet angles, a separation bubble is only slightly reduced due to surface roughness. The positive effect of a reduced separation bubble is overcompensated by a negative influence of surface roughness on the turbulent boundary layer downstream of the separation bubble. At high Reynolds numbers, the flow over the rough blade shows a turbulent separation leading to high total pressure loss coefficients. The laser-two-focus measurements indicate a velocity deficit close to the trailing edge, even at flow conditions where positive effects due to a reduction of the suction side separation have been expected. The turbulence intensity is reduced close downstream of the separation bubble but increased further downstream due to surface roughness. Thus the rear part of the blade but not the front part reacts sensitively on surface roughness. [S0889-504X(00)01302-7]


2005 ◽  
Vol 128 (3) ◽  
pp. 474-483 ◽  
Author(s):  
Hans Thermann ◽  
Reinhard Niehuis

Due to the trend in the design of modern aeroengines to reduce weight and to realize high pressure ratios, fan and first-stage compressor blades are highly susceptible to flutter. At operating points with transonic flow velocities and high incidences, stall flutter might occur involving strong shock-boundary layer interactions, flow separation, and oscillating shocks. In this paper, results of unsteady Navier-Stokes flow calculations around an oscillating blade in a linear transonic compressor cascade at different operating points including near-stall conditions are presented. The nonlinear unsteady Reynolds-averaged Navier-Stokes equations are solved time accurately using implicit time integration. Different low-Reynolds-number turbulence models are used for closure. Furthermore, empirical algebraic transition models are applied to enhance the accuracy of prediction. Computations are performed two dimensionally as well as three dimensionally. It is shown that, for the steady calculations, the prediction of the boundary layer development and the blade loading can be substantially improved compared with fully turbulent computations when algebraic transition models are applied. Furthermore, it is shown that the prediction of the aerodynamic damping in the case of oscillating blades at near-stall conditions can be dependent on the applied transition models.


Author(s):  
Marion Mack ◽  
Roland Brachmanski ◽  
Reinhard Niehuis

The performance of the low pressure turbine (LPT) can vary appreciably, because this component operates under a wide range of Reynolds numbers. At higher Reynolds numbers, mid and aft loaded profiles have the advantage that transition of suction side boundary layer happens further downstream than at front loaded profiles, resulting in lower profile loss. At lower Reynolds numbers, aft loading of the blade can mean that if a suction side separation exists, it may remain open up to the trailing edge. This is especially the case when blade lift is increased via increased pitch to chord ratio. There is a trend in research towards exploring the effect of coupling boundary layer control with highly loaded turbine blades, in order to maximize performance over the full relevant Reynolds number range. In an earlier work, pulsed blowing with fluidic oscillators was shown to be effective in reducing the extent of the separated flow region and to significantly decrease the profile losses caused by separation over a wide range of Reynolds numbers. These experiments were carried out in the High-Speed Cascade Wind Tunnel of the German Federal Armed Forces University Munich, Germany, which allows to capture the effects of pulsed blowing at engine relevant conditions. The assumed control mechanism was the triggering of boundary layer transition by excitation of the Tollmien-Schlichting waves. The current work aims to gain further insight into the effects of pulsed blowing. It investigates the effect of a highly efficient configuration of pulsed blowing at a frequency of 9.5 kHz on the boundary layer at a Reynolds number of 70000 and exit Mach number of 0.6. The boundary layer profiles were measured at five positions between peak Mach number and the trailing edge with hot wire anemometry and pneumatic probes. Experiments were conducted with and without actuation under steady as well as periodically unsteady inflow conditions. The results show the development of the boundary layer and its interaction with incoming wakes. It is shown that pulsed blowing accelerates transition over the separation bubble and drastically reduces the boundary layer thickness.


Sign in / Sign up

Export Citation Format

Share Document