Dynamics of Hydrogen and Proton Trapped in Diamond Lattice. A Direct Molecular Orbital Dynamics Approach.

2001 ◽  
Vol 34 (2) ◽  
pp. 207-210
Author(s):  
AKIRA SHIMIZU ◽  
MICHIO INAGAKI ◽  
HIROTO TACHIKAWA
Author(s):  
B. Cunningham ◽  
D.G. Ast

There have Been a number of studies of low-angle, θ < 4°, [10] tilt boundaries in the diamond lattice. Dislocations with Burgers vectors a/2<110>, a/2<112>, a<111> and a<001> have been reported in melt-grown bicrystals of germanium, and dislocations with Burgers vectors a<001> and a/2<112> have been reported in hot-pressed bicrystals of silicon. Most of the dislocations were found to be dissociated, the dissociation widths being dependent on the tilt angle. Possible dissociation schemes and formation mechanisms for the a<001> and a<111> dislocations from the interaction of lattice dislocations have recently been given.The present study reports on the dislocation structure of a 10° [10] tilt boundary in chemically vapor deposited silicon. The dislocations in the boundary were spaced about 1-3nm apart, making them difficult to resolve by conventional diffraction contrast techniques. The dislocation structure was therefore studied by the lattice-fringe imaging technique.


2020 ◽  
Vol 140 (11) ◽  
pp. 529-533
Author(s):  
Pasika Temeepresertkij ◽  
Saranya Yenchit ◽  
Michio Iwaoka ◽  
Satoru Iwamori

Sign in / Sign up

Export Citation Format

Share Document