Achievable Performance Assessment and Design for Parallel Cascade Control Systems

2005 ◽  
Vol 38 (3) ◽  
pp. 188-201 ◽  
Author(s):  
Junghui Chen ◽  
Shun-Chi Huang ◽  
Yuezhi Yea
2005 ◽  
Vol 192 (9) ◽  
pp. 1204-1220 ◽  
Author(s):  
Wen Tan ◽  
Jizhen Liu ◽  
Tongwen Chen ◽  
Horacio J. Marquez

2019 ◽  
Vol 292 ◽  
pp. 01064 ◽  
Author(s):  
Donka Ivanova ◽  
Nikolay Valov ◽  
Martin Deyanov

In this article the application of genetic algorithm for tuning of HVAC cascade system is proposed. The tuning procedure for a cascade system is very time-consuming and practice shows that additional controller tuning is needed when classical method is used. The main problem in classical method is the interconnection between the parameters of the two controllers. The proposed optimal tuning procedure overcomes the disadvantages. It is based on the following criteria: minimum integral square error, minimum settling time and minimum overshoot. The best process quality is achieved with PI controller in the inner loop and a PID controller in the outer loop of the cascade HVAC system. The proposed method for simultaneous tuning of controller parameters in a cascade control system can be applied in different control systems.


Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 379 ◽  
Author(s):  
Qian Zhang ◽  
Ya-Gang Wang ◽  
Fei-Fei Lee ◽  
Wei Zhang ◽  
Qiu Chen

Due to the fact that cascade control can improve the single-loop’s performance well and reduce the integral error from disturbance response, it has been one of the most important control strategies in industrial production, especially in thermal power plant and chemical engineering. However, most of the existing research is based on the Gaussian system and other few studies on the non-Gaussian cascade disturbance system also have obvious defects. In this paper, an effective control loop performance assessment (CPA) of cascade control system for many non-Gaussian distributions even the unknown mixture disturbance noise has been proposed. Compared to the minimum variance control (MVC) approach, the minimum entropy control (MEC) method can obtain a more accurate estimate. In this method, like MVC, the primary loop output and secondary loop output can be represented as invariant and dependent terms, then adopted estimated distribution algorithm (EDA) is used to achieve the system model and disturbances. In order to show the effectiveness of MEC, some simulation examples based on different perturbations are given.


Sign in / Sign up

Export Citation Format

Share Document